Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Porcine circoviral disease (PCVD) and Porcine circovirus associated disease (PCVAD), is a disease seen in domestic pigs. This disease causes illness in piglets, with clinical signs including progressive loss of body condition, visibly enlarged lymph nodes, difficulty in breathing, and sometimes diarrhea, pale skin, and jaundice. PCVD is very damaging to the pig-producing industry and has been reported worldwide. PCVD is caused by porcine circovirus type 2 (PCV-2).
The North American industry endorses "PCVAD" and European use "PCVD" to describe this disease.
Both PMWS and porcine dermatitis and nephropathy syndrome (PDNS) are associated to PCV-2. Many pigs affected by the circovirus also seem to develop secondary bacterial infections, like Glässer disease ("Haemophilus parasuis"), pulmonary pasteurellosis, colibacilosis, salmonellosis and others. Postmortem lesions occur in multiple organs, especially in lymphoid tissues and lung, giving rise to the term "multisystemic". Lesions may also affect the skin, kidney, reproductive tissue, brain, or blood vessels.
Wasting pigs is the most common sign of PMWS infection, increasing the mortality rate significantly.
Clinical signs are normally only seen in either piglets less than 3 weeks old or pregnant sows.
Signs in piglets include rhinitis, pneumonia, anaemia, fever and sudden death. Black discoloration around the eyes is often seen and gastrointestinal and neurological signs are also reported.
Signs in pregnant sows include reproductive failure, genital ulceration and agalactia.
After an incubation period of up to seven days, the signs associated with swine vesicular disease occur. The first sign is a transient mild fever. Other signs include:
- Vesicles in the mouth and on the snout and feet
- Lameness and an unsteady gait, shivering and jerking–type leg movements
- Ruptured vesicles can cause ulcers on limbs and feet, and foot pads may be loosened.
Young animals are more severely affected. Recovery often occurs within a week. There is no mortality.
Swine vesicular disease has the same clinical signs as foot-and-mouth disease, and can only be diagnosed by laboratory testing.
Porcine stress syndrome, also known as malignant hyperthermia or PSS, is a condition in pigs. It is characterised by hyperthermia triggered by stress, anaesthesia with halothane or intense exercise. PSS may appear as sudden death in pigs, often after transport. It is an inherited, autosomal recessive disorder due to a defective ryanodine receptor leading to huge calcium influx, muscle contracture and increase in metabolism.
PSS can manifest itself in the abattoir as the production of Pale, Soft and Exudative meat due to a rapid fall in muscle pH and degradation of muscle proteins and structure. This meat is usually rejected after inspection.
This disorder is most common in Landrace, Piétrain and crossbreeds of these breeds of pig. The genes may have been favoured in the past due to a larger muscle bulk in these breeds. However this is not standard protocol in developed countries these days.
Truckloads or railcar loads of PSS-susceptible pigs may be found with a higher-than-average percentage dead on arrival after stressful events such as transport.
Initial signs of the onset of PSS are pyrexia, panting, sweating, tachycardia and arrhythmias. Chronic cases may show muscle atrophy.
Under halothane anaesthesia, pigs will suddenly become rigid and pyrexic.
The halothane challenge was the historical method of diagnosis.
Genetic testing via a PCR enables affected and carrier animals to be found.
Psychologist Melanie Joy has likened PSS to post-traumatic stress disorder in humans.
Inclusion Body Rhinitis, also known as IBR or Cytomegalic Inclusion Disease, is a pig disease caused by porcine cytomegalovirus, which is a member of the herpesvirus family. It is a notifiable disease that is found worldwide. It is spread both vertically and horizontally and prevalence is high.
It is not a zoonosis but the risk to humans that receive pig organ transplants is currently under investigation.
Swine vesicular disease is most commonly brought into a herd by the introduction of a subclinically infected pig.
The disease can be transmitted in feed containing infected meat scraps, or by direct contact with infected feces (such as in an improperly cleaned truck).
Symptoms arise 4–12 hours after exposure to an organic dust, and generally last from one to five days. Common generalised symptoms include fever over 38 °C, chills, myalgia and malaise. The most frequent respiratory symptoms are dyspnea and a dry cough, while a wheeze may be present less commonly. Headache, rhinitis, conjunctivitis and keratitis can also be present, and skin irritation may occur in those handling grain.
Respiratory function may worsen to the point where hypoxia occurs, and damage to the airways may lead to non-cardiogenic pulmonary edema one to three days post exposure.
Laboratory investigations may show a raised white cell (and specifically neutrophil) count, while a chest X-ray is often normal or shows minimal interstitial infiltration.
Porcine enzootic pneumonia is caused by "Mycoplasma hyopneumoniae" and describes an important respiratory disease of pigs.
It is part of the Porcine Respiratory Disease Complex along with Swine Influenza, PRRS and Porcine circovirus 2, and even though on its own it is quite a mild disease, it predisposes to secondary infections with organisms such as "Pasteurella multocida".
Clinical signs are most commonly seen in pigs over 8 weeks of age, and the disease occurs worldwide. Transmission is horizontal and vertical from sows.
Organic dust toxic syndrome (ODTS) is a potentially severe flu-like syndrome originally described in farmers, mushroom workers, bird breeders and other persons occupationally exposed to dusty conditions.
Symptoms of cerebellar abiotrophy include ataxia or lack of balance, an awkward wide-legged stance, a head tremor (intention tremor) (in dogs, body tremors also occur), hyperreactivity, lack of menace reflex, stiff or high-stepping gait, coarse or jerky head bob when in motion (or in very young animals, when attempting to nurse), apparent lack of awareness of where the feet are (sometimes standing or trying to walk with a foot knuckled over), poor depth perception, and a general inability to determine space and distance. The symptoms, when taken as a group, are distinctive and not easily mimicked by other illnesses, though certain types of neurological injury and infection need to be ruled out. Verifying the diagnosis in a laboratory setting is possible only by examining the brain post-mortem to determine if there has been a loss of Purkinje cells.
Most affected animals have normal intelligence and mildly affected animals can, in theory, live out a normal lifespan. However, affected animals are quite accident-prone, and for this reason many animals that develop CA, particularly horses, are euthanized for humane reasons. Horses may experience difficulty stepping up and over objects, run into fences, fall easily, and even if allowed to mature to full growth, are generally considered unsafe to ride. Dogs may need lifetime assistance with tasks such as climbing stairs.
In horses, the symptoms may worsen from the time of onset for six to 12 months, but if not severe enough to mandate euthansia, they stabilize over time. In some dog breeds, symptoms appear to progressively worsen, but research is not consistent on this point. There also is some evidence that affected animals partially compensate for the condition by cognitively learning alternative methods for moving or to determine distance, and thus appear to improve because they become less accident-prone.
The incubation period for foot-and-mouth disease virus has a range between one and 12 days. The disease is characterized by high fever that declines rapidly after two or three days, blisters inside the mouth that lead to excessive secretion of stringy or foamy saliva and to drooling, and blisters on the feet that may rupture and cause lameness. Adult animals may suffer weight loss from which they do not recover for several months, as well as swelling in the testicles of mature males, and in cows, milk production can decline significantly. Though most animals eventually recover from FMD, the disease can lead to myocarditis (inflammation of the heart muscle) and death, especially in newborn animals. Some infected ruminants remain asymptomatic carriers, but they nonetheless carry FMDV and may be able to transmit it to others. Pigs cannot serve as asymptomatic carriers.
Foot-and-mouth disease or hoof-and-mouth disease (Aphthae epizooticae) is an infectious and sometimes fatal viral disease that affects cloven-hoofed animals, including domestic and wild bovids. The virus causes a high fever for approximately two to six days, followed by blisters inside the mouth and on the feet that may rupture and cause lameness.
Foot-and-mouth disease (FMD) has very severe implications for animal farming, since it is highly infectious and can be spread by infected animals comparatively easily through contact with contaminated farming equipment, vehicles, clothing, feed and by domestic and wild predators. Its containment demands considerable efforts in vaccination, strict monitoring, trade restrictions, quarantines and occasionally the culling of animals.
Susceptible animals include cattle, water buffalo, sheep, goats, pigs, antelope, deer, and bison. It has also been known to infect hedgehogs and elephants; llamas and alpacas may develop mild symptoms, but are resistant to the disease and do not pass it on to others of the same species. In laboratory experiments, mice, rats, and chickens have been successfully infected by artificial means, but they are not believed to contract the disease under natural conditions. Humans are very rarely infected.
The virus responsible for the disease is a picornavirus, the prototypic member of the genus "Aphthovirus". Infection occurs when the virus particle is taken into a cell of the host. The cell is then forced to manufacture thousands of copies of the virus, and eventually bursts, releasing the new particles in the blood. The virus is genetically highly variable, which limits the effectiveness of vaccination.
Aujeszky's disease, usually called pseudorabies in the United States, is a viral disease in swine that has been endemic in most parts of the world. It is caused by "Suid herpesvirus 1" (SuHV1). Aujeszky's disease is considered to be the most economically important viral disease of swine in areas where hog cholera has been eradicated. Other mammals, such as humans, cattle, sheep, goats, cats, dogs, and raccoons, are also susceptible. The disease is usually fatal in these animal species bar humans.
The term "pseudorabies" is found inappropriate by many people, as SuHV1 is a herpesvirus and not related to the rabies virus.
Research on SuHV1 in pigs has pioneered animal disease control with genetically modified vaccines. SuHV1 is now used in model studies of basic processes during lytic herpesvirus infection, and for unravelling molecular mechanisms of herpesvirus neurotropism.
Pigs usually cough and may show more severe respiratory signs if secondary bacteria have invaded. This may lead to signs of pneumonia and systemic involvement.
Diagnosis relies on culture and isolation of the bacteria but this can be challenging.
PCR, ELISA, fluorescent antibody testing and post-mortem findings all help in making the diagnosis.
In the acute form of the disease caused by highly virulent strains, pigs may develop a high fever, but show no other noticeable symptoms for the first few days. They then gradually lose their appetites and become depressed. In white-skinned pigs, the extremities turn blueish-purple and hemorrhages become apparent on the ears and abdomen. Groups of infected pigs lie huddled together shivering, breathing abnormally, and sometimes coughing. If forced to stand, they appear unsteady on their legs. Within a few days of infection, they enter a comatose state and then die. In pregnant sows, spontaneous abortions occur. In milder infections, affected pigs lose weight, becoming thin, and develop signs of pneumonia, skin ulcers, and swollen joints.
Cutis marmorata also occurs in decompression sickness (DCS). Although it is considered Type I DCS, which is non-neurological, it is typically treated as if the patient has the more severe Type II DCS. This is because past experience in diving medicine has shown that patients initially presented with only this symptom have a high likelihood of progression to neurological, Type II, DCS without prompt treatment. The marbling does not resolve until few days after treatment, but any pruritus (itching) will likely disappear upon initial recompression.
Progressive inflammatory neuropathy (PIN) is a disease that was identified in a report, released on January 31, 2008, by the Centers for Disease Control and Prevention. The first known outbreak of this neuropathy occurred in southeastern Minnesota in the United States. The disease was reported among pig slaughterhouse workers who appeared at various care facilities in the area reporting similar neurological symptoms. The disease was later identified at pork processing plants in Indiana and Nebraska as well. The condition is characterized by acute paralysis, pain, fatigue, numbness, and weakness, especially in extremities. It was initially believed that workers might have contracted the disease through inhaling aerosols from pig brains blown through a compressed-air hose and that this exposure to pig neural tissue induced an autoimmune response that might have produced their mysterious peripheral neuropathy. These suspicions were confirmed in reports and investigations conducted at the Mayo Clinic in Rochester, Minnesota.
Respiratory infection is usually asymptomatic in pigs more than 2 months old, but it can cause abortion, high mortality in piglets, and coughing, sneezing, fever, constipation, depression, seizures, ataxia, circling, and excess salivation in piglets and mature pigs. Mortality in piglets less than one month of age is close to 100%, but it is less than 10% in pigs between one and six months of age. Pregnant swine can reabsorb their litters or deliver mummified, stillborn, or weakened piglets. In cattle (see next section), symptoms include intense itching followed by neurological signs and death. In dogs, symptoms include intense itching, jaw and pharyngeal paralysis, howling, and death Any infected secondary host generally only lives two to three days.
Genital infection appears to have been common in a great part of the 20th century in many European countries in swine herds, where boars from boar centres were used for natural service of sows or gilts. This disease manifestation has always been asymptomatic in affected pigs, and presence of the infection on a farm was detected only because of cases in cattle showing pruritus on the hindquarters (vaginal infection, see below).
In susceptible animals other than swine, infection is usually fatal, and the affected animals most often show intense pruritus in a skin area.
Pruritus in Aujeszky's disease is considered a phantom sensation, and virus has never been found at the site of pruritus.
Cerebellar abiotrophy (CA), also referred to as the cerebellar cortical abiotrophy (CCA), is a genetic neurological disease in animals best known to affect certain breeds of horses, dogs and cats. It can also develop in humans. It develops when the neurons known as Purkinje cells, located in the cerebellum of the brain, begin to die off. These cells affect balance and coordination. They have a critical role to play in the brain. The Purkinje layer allows communication between the granular and molecular cortical layers in the cerebellum. Put simply, without Purkinje cells, an animal loses its sense of space and distance, making balance and coordination difficult. People with damage to the cerebellum can experience symptoms like unsteady gait, poor muscle control, and trouble speaking or swallowing.
"Abiotrophy" means the loss of a vital nutritive factor. The exact cause of cerebellar abiotrophy is not known, but it is thought to be due to an intrinsic metabolic defect.
In most cases, the Purkinje neurons begin to die off shortly after the animal is born and the condition is noticeable when the animal is less than six months old, though sometimes the onset of symptoms is gradual and the animal is much older before the owner or caretaker notices a problem.
CA cannot be prevented, other than by selective breeding to avoid the gene, and it cannot be cured. Genetic testing can detect carriers. In addition to dogs and horses, there also have been cases of cerebellar abiotrophy in Siamese and Domestic shorthair cats; in Angus, Polled Hereford, Charolais and Holstein Friesian cattle; Merino and Wiltshire sheep; and Yorkshire pigs.
Barcoo fever is an illness once common in the Australian outback that is now virtually unknown. It was characterised by nausea and vomiting exacerbated by the sight or smell of food and, unlike the usual gastro-intestinal infections, by constipation rather than diarrhoea. Fever and myalgia were also symptoms. Severe cases developed inanition and even death. It was seen in travelers in the outback rather than in cities or towns, but occasionally entire settlements were affected, such as occurred in Toowoomba in 1903. The aboriginal population knew to avoid the ailment by not drinking from certain water sources and by taking water from soaks or pits dug in the dry sandy bed of a stream.
It is postulated that the disease may be due to ingestion of cyanobacterial (blue-green algal) toxins, in particular cylindrospermopsin, a toxin from "Cylindrospermopsis raciborskii" and other cyanobacteria, which is a hepatotoxin. The symptoms of the disease are consistent with a hepatitis or liver disorder, and "Cylindrospermopsis" is known to be widespread in inland Australian water sources. The toxin is not destroyed by boiling and, although it would flavor water, this flavor would be masked by tea, the common beverage in the Australian bush. Provision of safe drinking water sources in Australia, with the development of bores and covered tanks to collect rainwater, explain the demise of a once-common illness.
Necrotising hepatopancreatitis (NHP), is also known as Texas necrotizing hepatopancreatitis (TNHP), Texas Pond Mortality Syndrome (TPMS) and Peru necrotizing hepatopancreatitis (PNHP), is a lethal epizootic disease of farmed shrimp. It is not very well researched yet, but generally assumed to be caused by a bacterial infection.
NHP mainly affects the farmed shrimp species "Litopenaeus vannamei" (Pacific white shrimp) and "Litopenaeus stylirostris" (Western blue shrimp), but has also been reported in three other American species, namely "Farfantepenaeus aztecus", "Farfantepenaeus californiensis", and "Litopenaeus setiferus". The highest mortality rates occur in "L. vannamei", which is one of the two most frequently farmed species of shrimp. Untreated, the disease causes mortality rates of up to 90 percent within 30 days. A first outbreak of NHP had been reported in Texas in 1985; the disease then spread to shrimp aquacultures in South America, in 2009 to China and subsequently Southeast Asia, followed by massive outbreaks in that region in 2012-2013.
NHP is associated with a small, gram-negative, and highly pleomorphic "Rickettsia"-like bacterium that belongs to its own, new genus in the alpha proteobacteria. However, in early-2013 a novel strain of "Vibrio parahaemolyticus" was identified as a more likely causative agent, though involvement of a virus cannot be definitely ruled out yet.
The aetiological agent is the pathogenic agent Candidatus "Hepatobacter penaei", an obligate intracellular bacterium of the Order α-Proteobacteria.
Infected shrimps show gross signs including soft shells and flaccid bodies, black or darkened gills, dark edges of the pleopods, and uropods, and an atrophied hepatopancreas that is whitish instead of orange or tan as is usual.
Whichever of the two bacteria associated with NHP actually causes it, the pathogen seems to prefer high water temperatures (above ) and elevated levels of salinity (more than 20–38 ppt). Avoiding such conditions in shrimp ponds is thus an important disease control measure.
People with CHS have light skin and silvery hair (albinism) and frequently complain of solar sensitivity and photophobia. Other signs and symptoms vary considerably, but frequent infections and neuropathy are common. The infections involve mucous membranes, skin, and the respiratory tract. Affected children are susceptible to infection by Gram-positive and gram-negative bacteria and fungi, with "Staphylococcus aureus" being the most common infection cause. Infections in CHS patients tend to be very serious and even life-threatening. Neuropathy often begins in the teenage years and becomes the most prominent problem. Few patients with this condition live to adulthood.
Most children with Chédiak–Higashi syndrome ultimately reach a stage known as the "accelerated phase", or the "lymphoma-like syndrome", in which defective white blood cells divide uncontrollably and invade many of the body's organs. The accelerated phase is associated with fever, episodes of abnormal bleeding, overwhelming infections, and organ failure. These medical problems are usually life-threatening in childhood.
Daentl Townsend Siegel syndrome is a very rare disorder characterized by blue sclerae, kidney malfunction, thin skin, and hydrocephalus. It was first identified by D.L. Daentl et al. in 1978. Daentl Townsend Siegel syndrome is also known as "Hydrocephalus blue sclera nephropathy" and "Familial nephrosis, hydrocephalus, thin skin, blue sclerae syndrome".