Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The two most common signs and symptoms of bone marrow failure are bleeding and bruising. Blood may be seen throughout the gums, nose or the skin, and tend to last longer than normal. Children have a bigger chance of seeing blood in their urine or stools, which results in digestive problems with an unpleasant scent. Individuals with this condition may also encounter tooth loss or tooth decay. Chronic fatigue, shortness of breath, and recurrent colds can also be symptoms of bone marrow failure.
Bone marrow failure occurs in individuals who produce an insufficient amount of red blood cells, white blood cells or platelets. Red blood cells transport oxygen to be distributed throughout the body’s tissue. White blood cells fight off infections that enter the body. Bone marrow also contains platelets, which trigger clotting, and thus help stop the blood flow when a wound occurs.
Signs and symptoms due to the cryoglobulins of type I disease reflect the hyperviscosity and deposition of cryoglobulins within the blood vessels which reduce or stop blood perfusion to tissues. These events occur particularly in cases where blood cryoglobulin levels of monoclonal IgM are high in patients with IgM MGUS, smoldering Waldenström's macroglobulinemia, or Waldenström's macroglobulinemia and in uncommon cases where the levels of monoclonal IgA, IgG, free κ light chains, or free λ light chains are extremely high in patients with non-IgM MGUS, non-IgM smoldering multiple myeloma, or multiple myeloma. The interruption of blood flow to neurological tissues can cause symptoms of confusion, headache, hearing loss, and peripheral neuropathy. Interruption of blood flow to other tissues in type I disease can cause cutaneous manifestations of purpura, acrocyanosis, necrosis, ulcers, and livedo reticularis; spontaneous nose bleeds, joint pain, membranoproliferative glomerulonephritis; and cardiovascular disturbances such as shortness of breath, hypoxemia, and congestive heart failure.
The signs and symptoms in the increasingly rare cases of cryoglobulinemic disease that cannot be attributed to an underlying disease generally resemble those of patients suffering Type II and III (i.e. mixed) cryoglobulinemic disease.
The symptoms of Felty's syndrome are similar to those of rheumatoid arthritis. Patients suffer from painful, stiff, and swollen joints, most commonly in the joints of the hands, feet, and arms. In some affected individuals, Felty's syndrome may develop during a period when the symptoms and physical findings associated with rheumatoid arthritis have subsided or are not present; in this case, Felty's syndrome may remain undiagnosed. In more rare instances, the development of Felty's syndrome may precede the development of the symptoms and physical findings associated with rheumatoid arthritis.
Felty's syndrome is also characterized by an abnormally enlarged spleen (splenomegaly) and abnormally low levels of certain white blood cells (neutropenia). As a result of neutropenia, affected individuals are increasingly susceptible to certain infections. Keratoconjunctivitis sicca may occur due to secondary Sjorgen's syndrome. Individuals with Felty's syndrome may also experience fever, weight loss, and/or fatigue. In some cases, affected individuals may have discoloration (abnormal brown pigmentation) of the skin, particularly of the leg, sores (ulcers) on the lower leg, and/or an abnormally large liver (hepatomegaly). In addition, affected individuals may have abnormally low levels of circulating red blood cells (anemia), a decrease in circulating blood platelets that assist in blood clotting functions (thrombocytopenia), abnormal liver function tests and/or inflammation of the blood vessels (vasculitis).
Acute chest syndrome (ACS) is defined by at least two of the following signs or symptoms: chest pain, fever, pulmonary infiltrate or focal abnormality, respiratory symptoms, or hypoxemia. It is the second-most common complication and it accounts for about 25% of deaths in patients with SCD, majority of cases present with vaso-occlusive crises then they develop ACS. Nevertheless, about 80% of patients have vaso-occlusive crises during ACS.
Aplastic crises are acute worsenings of the patient's baseline anaemia, producing pale appearance, fast heart rate, and fatigue. This crisis is normally triggered by parvovirus B19, which directly affects production of red blood cells by invading the red cell precursors and multiplying in and destroying them. Parvovirus infection almost completely prevents red blood cell production for two to three days. In normal individuals, this is of little consequence, but the shortened red cell life of SCD patients results in an abrupt, life-threatening situation. Reticulocyte counts drop dramatically during the disease (causing reticulocytopenia), and the rapid turnover of red cells leads to the drop in haemoglobin. This crisis takes 4 days to one week to disappear. Most patients can be managed supportively; some need blood transfusion.
This condition affects less than 1% of patients with rheumatoid arthritis. The presence of three conditions: rheumatoid arthritis, an enlarged spleen (splenomegaly), and an abnormally low white blood cell count are indications that Felty's syndrome is possibly occurring. This condition as a whole is difficult to diagnose due to its complexity given a combination of disorders. It is commonly overlooked or misdiagnosed as other conditions (e.g., leukemia, systemic lupus erythrematosus) because of the rarity and lack of good understanding about it. An acronym can be used to make recognizing this disease somewhat easier:
S: Splenomegaly
A: Anemia
N: Neutropenia
T: Thrombocytopenia
A: Arthritis (rheumatoid)
An autosplenectomy (from" 'auto-' "self," '-splen-' "spleen," '-ectomy' "removal) is a negative outcome of disease and occurs when a disease damages the spleen to such an extent that it becomes shrunken and non-functional. The spleen is an important immunological organ that acts as a filter for red blood cells, triggers phagocytosis of invaders, and mounts an immunological response when necessary. Lack of a spleen, called asplenia, can occur by autosplenectomy or the surgical counterpart, splenectomy. Asplenia can increase susceptibility to infection. Autosplenectomy can occur in cases of sickle-cell disease where the misshapen cells block blood flow to the spleen, causing fibrosis and eventual atrophy of the organ. Autosplenectomy is a rare condition that is linked to certain diseases but is not a common occurrence.
Cold agglutinin disease is an autoimmune disease characterized by the presence of high concentrations of circulating antibodies, usually IgM, directed against red blood cells. It is a form of autoimmune hemolytic anemia, specifically one in which antibodies only bind red blood cells at low body temperatures, typically 28–31 °C.
Cold agglutinin disease was first described in 1957.
Cold agglutinin disease can be either primary (arising spontaneously) or secondary (a result of another pathology).
- The primary form is caused by excessive cell proliferation of B lymphocytes.
- Secondary cold agglutinin disease is a result of an underlying condition.
- In adults, this is typically due to a lymphoproliferative disease such as lymphoma and chronic lymphoid leukemia, or infection. Waldenström's macroglobulinemia may also be positive for cold agglutinins.
- In children, cold agglutinin disease is often secondary to an infection, such as "Mycoplasma" pneumonia, mononucleosis, and HIV.
The overproduction of red blood cells may be due to a primary process in the bone marrow (a so-called myeloproliferative syndrome), or it may be a reaction to chronically low oxygen levels or, rarely, a malignancy. Alternatively, additional red blood cells may have been received through another process—for example, being over-transfused (either accidentally or, as blood doping, deliberately) or being the recipient twin in a pregnancy, undergoing twin-to-twin transfusion syndrome.
Primary polycythemias are due to factors intrinsic to red cell precursors. Polycythemia vera (PCV), polycythemia rubra vera (PRV), or erythremia, occurs when excess red blood cells are produced as a result of an abnormality of the bone marrow. Often, excess white blood cells and platelets are also produced. PCV is classified as a myeloproliferative disease. Symptoms include headaches and vertigo, and signs on physical examination include an abnormally enlarged spleen and/or liver. In some cases, affected individuals may have associated conditions including high blood pressure or formation of blood clots. Transformation to acute leukemia is rare. Phlebotomy is the mainstay of treatment. A hallmark of polycythemia is an elevated hematocrit, with Hct > 55% seen in 83% of cases. A somatic (non-hereditary) mutation (V617F) in the "JAK2" gene is found in 95% of cases, though also present in other myeloproliferative disorders.
Primary familial polycythemia, also known as primary familial and congenital polycythemia (PFCP), exists as a benign hereditary condition, in contrast with the myeloproliferative changes associated with acquired PCV. In many families, PFCP is due to an autosomal dominant mutation in the "EPOR" erythropoietin receptor gene. PFCP can cause an increase of up to 50% in the oxygen-carrying capacity of the blood; skier Eero Mäntyranta had PFCP, which is considered to have given him a large advantage in endurance events.
The most common symptoms in children are easy bruising, pale skin, fever, and an enlarged spleen or liver.
Damage to the bone marrow, by way of displacing the normal bone marrow cells with higher numbers of immature white blood cells, results in a lack of blood platelets, which are important in the blood clotting process. This means people with leukemia may easily become bruised, bleed excessively, or develop pinprick bleeds (petechiae).
White blood cells, which are involved in fighting pathogens, may be suppressed or dysfunctional. This could cause the patient's immune system to be unable to fight off a simple infection or to start attacking other body cells. Because leukemia prevents the immune system from working normally, some patients experience frequent infection, ranging from infected tonsils, sores in the mouth, or diarrhea to life-threatening pneumonia or opportunistic infections.
Finally, the red blood cell deficiency leads to anemia, which may cause dyspnea and .
Some patients experience other symptoms, such as feeling sick, having fevers, chills, night sweats, feeling fatigued and other flu-like symptoms. Some patients experience nausea or a feeling of fullness due to an enlarged liver and spleen; this can result in unintentional weight loss. Blasts affected by the disease may come together and become swollen in the liver or in the lymph nodes causing pain and leading to nausea.
If the leukemic cells invade the central nervous system, then neurological symptoms (notably headaches) can occur. Uncommon neurological symptoms like migraines, seizures, or coma can occur as a result of brain stem pressure. All symptoms associated with leukemia can be attributed to other diseases. Consequently, leukemia is always diagnosed through medical tests.
The word "leukemia", which means 'white blood', is derived from the characteristic high white blood cell count that presents in most afflicted patients before treatment. The high number of white blood cells are apparent when a blood sample is viewed under a microscope, with the extra white blood cells frequently being immature or dysfunctional. The excessive number of cells can also interfere with the level of other cells, causing further harmful imbalance in the blood count.
Some leukemia patients do not have high white blood cell counts visible during a regular blood count. This less-common condition is called "aleukemia". The bone marrow still contains cancerous white blood cells which disrupt the normal production of blood cells, but they remain in the marrow instead of entering the bloodstream, where they would be visible in a blood test. For an aleukemic patient, the white blood cell counts in the bloodstream can be normal or low. Aleukemia can occur in any of the four major types of leukemia, and is particularly common in hairy cell leukemia.
Hereditary spherocytosis (also known as Minkowski–Chauffard syndrome) abnormality of erythrocytes. The disorder is caused by mutations in genes relating to membrane proteins that allow for the erythrocytes to change shape. The abnormal erythrocytes are sphere-shaped (spherocytosis) rather than the normal biconcave disk shaped. Dysfunctional membrane proteins interfere with the cell's ability to be flexible to travel from the arteries to the smaller capillaries. This difference in shape also makes the red blood cells more prone to rupture. Cells with these dysfunctional proteins are taken for degradation at the spleen. This shortage of erythrocytes results in hemolytic anemia.
It was first described in 1871 and is the most common cause of inherited hemolysis in Europe and North America within the Caucasian population, with an incidence of 1 in 5000 births. The clinical severity of HS varies from symptom-free
carrier to severe haemolysis because the disorder exhibits incomplete penetrance in its expression.
Symptoms include anemia, jaundice, splenomegaly, and fatigue. On a blood smear, Howell-Jolly bodies may be seen within red blood cells. Primary treatment for patients with symptomatic HS has been total splenectomy, which eliminates the hemolytic process, allowing normal hemoglobin, reticulocyte and bilirubin levels.
As in non-hereditary spherocytosis, the spleen destroys the spherocytes. This process of red blood cells rupturing directly results in varying degrees of anemia (causing a pale appearance and fatigue), high levels of bilirubin in the blood (causing jaundice), and splenomegaly.
Acute cases can threaten to cause hypoxia through anemia and acute kernicterus through high blood levels of bilirubin, particularly in newborns. Most cases can be detected soon after birth. An adult with this disease should have their children tested, although the presence of the disease in children is usually noticed soon after birth. Occasionally, the disease will go unnoticed until the child is about 4 or 5 years of age. A person may also be a carrier of the disease and show no signs or symptoms of the disease. Other symptoms may include abdominal pain that could lead to the removal of the spleen and/or gallbladder.
Chronic symptoms include anemia, increased blood viscosity, and splenomegaly, and some symptoms are still unknown at this stage. Furthermore, the detritus of the broken-down blood cells – unconjugated or indirect bilirubin – accumulates in the gallbladder, and can cause pigmented gallstones to develop. In chronic patients, an infection or other illness can cause an increase in the destruction of red blood cells, resulting in the appearance of acute symptoms, a "hemolytic crisis". Spherocytosis patients who are heterozygous for a hemochromatosis gene may suffer from iron overload despite the hemochromatosis genes being recessive.
Anemia of chronic disease, or anemia of chronic inflammation, is a form of anemia seen in chronic infection, chronic immune activation, and malignancy. These conditions all produce massive elevation of Interleukin-6, which stimulates hepcidin production and release from the liver, which in turn reduces the iron carrier protein ferroportin so that access of iron to the circulation is reduced. Other mechanisms may also play a role, such as reduced erythropoiesis.
Anemia of chronic inflammation is the preferred term since not all chronic diseases are associated with this form of anemia.
Drug induced hemolysis has large clinical relevance. It occurs when drugs actively provoke red blood cell destruction. It can be divided in the following manner:
- Drug-induced autoimmune hemolytic anemia
- Drug-induced nonautoimmune hemolytic anemia
A total of four mechanisms are usually described, but there is some evidence that these mechanisms may overlap.
Pneumococcal septicemia, or whole-body infection caused by the "Streptococcus pneumoniae" bacteria, has been reported to cause autosplenectomy but is a very rare and poorly understood complication of the infection.
Acquired hemolytic anemia can be divided into immune and non-immune mediated forms of hemolytic anemia.
Most people do not have symptoms. It can cause a mild to moderate enlargement of the spleen, splenomegaly, as well as hemolytic anemia (which is the form of anemia due to abnormal breakdown of red blood cells prematurely). Too much hemoglobin C can reduce the number and size of red blood cells in the body, causing mild anemia. Occasionally, jaundice may occur. Some persons with this disease may develop gallstones that require treatment. Continued hemolysis may produce pigmented gallstones, an unusual type of gallstone composed of the dark-colored contents of red blood cells.
Leukemia, also spelled leukaemia, is a group of cancers that usually begin in the bone marrow and result in high numbers of abnormal white blood cells. These white blood cells are not fully developed and are called "blasts" or "leukemia cells". Symptoms may include bleeding and bruising problems, feeling tired, fever, and an increased risk of infections. These symptoms occur due to a lack of normal blood cells. Diagnosis is typically made by blood tests or bone marrow biopsy.
The exact cause of leukemia is unknown. Different kinds of leukemia are believed to have different causes. Both inherited and environmental (non-inherited) factors are believed to be involved. Risk factors include smoking, ionizing radiation, some chemicals (such as benzene), prior chemotherapy, and Down syndrome. People with a family history of leukemia are also at higher risk. There are four main types of leukemia — acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL) and chronic myeloid leukemia (CML) — as well as a number of less common types. Leukemias and lymphomas both belong to a broader group of tumors that affect the blood, bone marrow, and lymphoid system, known as tumors of the hematopoietic and lymphoid tissues.
Treatment may involve some combination of chemotherapy, radiation therapy, targeted therapy, and bone marrow transplant, in addition to supportive care and palliative care as needed. Certain types of leukemia may be managed with watchful waiting. The success of treatment depends on the type of leukemia and the age of the person. Outcomes have improved in the developed world. The average five-year survival rate is 57% in the United States. In children under 15, the five-year survival rate is greater than 60 to 85%, depending on the type of leukemia. In children with acute leukemia who are cancer-free after five years, the cancer is unlikely to return.
In 2015, leukemia was present in 2.3 million people and caused 353,500 deaths. In 2012 it newly developed in 352,000 people. It is the most common type of cancer in children, with three quarters of leukemia cases in children being the acute lymphoblastic type. However, about 90% of all leukemias are diagnosed in adults, with AML and CLL being most common in adults. It occurs more commonly in the developed world.
While no single test is reliable to distinguish iron deficiency anemia from the anemia of chronic inflammation, there are sometimes some suggestive data:
- In anemia of chronic inflammation without iron deficiency, ferritin is normal or high, reflecting the fact that iron is sequestered within cells, and ferritin is being produced as an acute phase reactant. In iron deficiency anemia ferritin is low.
- Total iron-binding capacity (TIBC) is high in iron deficiency, reflecting production of more transferrin to increase iron binding; TIBC is low or normal in anemia of chronic inflammation.
In a peripheral blood smear, the red blood cells will "appear" abnormally small and lack the central pale area that is present in normal red blood cells. These changes are also seen in non-hereditary spherocytosis, but they are typically more pronounced in hereditary spherocytosis. The number of immature red blood cells (reticulocyte count) will be elevated. An increase in the mean corpuscular hemoglobin concentration is also consistent with hereditary spherocytosis.
Other protein deficiencies cause hereditary elliptocytosis, pyropoikilocytosis or stomatocytosis.
In longstanding cases and in patients who have taken iron supplementation or received numerous blood transfusions, iron overload may be a significant problem. This is a potential cause of heart muscle damage and liver disease. Measuring iron stores is therefore considered part of the diagnostic approach to hereditary spherocytosis.
An osmotic fragility test can aid in the diagnosis. In this test, the spherocytes will rupture in liquid solutions less concentrated than the inside of the red blood cell. This is due to increased permeability of the spherocyte membrane to salt and water, which enters the concentrated inner environment of the RBC and leads to its rupture. Although the osmotic fragility test is widely considered the gold standard for diagnosing hereditary spherocytosis, it misses as many as 25% of cases. Flow cytometric analysis of eosin-5′-maleimide-labeled intact red blood cells and the acidified glycerol lysis test are two additional options to aid diagnosis.
Target cells, microspherocytes and HbC crystals are found in a blood smear from a homozygous patient.
Individuals with congenital hypfibringenemia often lack any symptoms are detected by routine lab testing of fibrinogen or when tested for it because close relatives have symptomatic hypofibrinogenmeia. Indeed, studies indicate that, among family members with the identical congenital hypofibrinogenemia mutation, some never exhibit symptoms and those that are symptomatic develop symptoms only as adults.