Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The definition of visual impairment is reduced vision not corrected by glasses or contact lenses. The World Health Organization uses the following classifications of visual impairment. When the vision in the better eye with best possible glasses correction is:
- 20/30 to 20/60 : is considered mild vision loss, or near-normal vision
- 20/70 to 20/160 : is considered moderate visual impairment, or moderate low vision
- 20/200 to 20/400 : is considered severe visual impairment, or severe low vision
- 20/500 to 20/1,000 : is considered profound visual impairment, or profound low vision
- More than 20/1,000 : is considered near-total visual impairment, or near total blindness
- No light perception : is considered total visual impairment, or total blindness
Blindness is defined by the World Health Organization as vision in a person's best eye with best correction of less than 20/500 or a visual field of less than 10 degrees. This definition was set in 1972, and there is ongoing discussion as to whether it should be altered to officially include uncorrected refractive errors.
Symptom-producing, or pathological, scotomata may be due to a wide range of disease processes, affecting any part of the visual system, including the retina (in particular its most sensitive portion, the macula), the optic nerve and even the visual cortex. A pathological scotoma may involve any part of the visual field and may be of any shape or size. A scotoma may include and enlarge the normal blind spot. Even a small scotoma that happens to affect central or macular vision will produce a severe visual disability, whereas a large scotoma in the more peripheral part of a visual field may go unnoticed by the bearer because of the normal reduced optical resolution in the peripheral visual field.
Visual impairment, also known as vision impairment or vision loss, is a decreased ability to see to a degree that causes problems not fixable by usual means, such as glasses. Some also include those who have a decreased ability to see because they do not have access to glasses or contact lenses. Visual impairment is often defined as a best corrected visual acuity of worse than either 20/40 or 20/60. The term blindness is used for complete or nearly complete vision loss. Visual impairment may cause people difficulties with normal daily activities such as driving, reading, socializing, and walking.
The most common causes of visual impairment globally are uncorrected refractive errors (43%), cataracts (33%), and glaucoma (2%). Refractive errors include near sighted, far sighted, presbyopia, and astigmatism. Cataracts are the most common cause of blindness. Other disorders that may cause visual problems include age related macular degeneration, diabetic retinopathy, corneal clouding, childhood blindness, and a number of infections. Visual impairment can also be caused by problems in the brain due to stroke, premature birth, or trauma among others. These cases are known as cortical visual impairment. Screening for vision problems in children may improve future vision and educational achievement. Screening adults without symptoms is of uncertain benefit. Diagnosis is by an eye exam.
The World Health Organization (WHO) estimates that 80% of visual impairment is either preventable or curable with treatment. This includes cataracts, the infections river blindness and trachoma, glaucoma, diabetic retinopathy, uncorrected refractive errors, and some cases of childhood blindness. Many people with significant visual impairment benefit from vision rehabilitation, changes in their environment, and assistive devices.
As of 2015 there were 940 million people with some degree of vision loss. 246 million had low vision and 39 million were blind. The majority of people with poor vision are in the developing world and are over the age of 50 years. Rates of visual impairment have decreased since the 1990s. Visual impairments have considerable economic costs both directly due to the cost of treatment and indirectly due to decreased ability to work.
Seeing rainbows around lights, especially at night, usually indicates swelling of the cornea. This may occur from a variety of causes which are discussed under Corneal Edema. Cataract can sometimes cause this also.
Colour vision is perceived mainly by the macula, which is the central vision portion of the retina. Thus any disorder affecting the macula may cause a disturbance in color vision. However, about 8% of males and 0.5% of females have some version of "colour blindness" from birth. Usually this is a genetically inherited trait, and is of the "red-green confusion" variety. The reds, browns, olives, and gold may be confused. Purple may be confused with blue, and pastel pinks, oranges, yellows, and greens look similar. Usually both eyes are affected equally.
There are many obscure macular retinal disorders that can lead to a loss of colour vision, and many of these syndromes are inherited as well. There may also be a problem with a generalized loss of vision with these problems as well. Other retinal problems can lead to a temporary disturbance of colour vision, such as Central serous chorioretinopathy, Macular Edema of different causes, and Macular Degeneration.
Certain types of cataract can gradually affect the colour vision, but this is usually not noticed until one cataract is removed. The cataract seems to filter out the colour blue, and everything seems more blue after cataract extraction. Optic nerve disorders such as Optic Neuritis can greatly affect colour vision, with colours seeming washed out during or after an episode.
Common causes of scotomata include demyelinating disease such as multiple sclerosis (retrobulbar neuritis), damage to nerve fiber layer in the retina (seen as cotton wool spots) due to hypertension, toxic substances such as methyl alcohol, ethambutol and quinine, nutritional deficiencies, vascular blockages either in the retina or in the optic nerve, stroke or other brain injury, and macular degeneration, often associated with aging. Scintillating scotoma is a common visual aura in migraine. Less common, but important because they are sometimes reversible or curable by surgery, are scotomata due to tumors such as those arising from the pituitary gland, which may compress the optic nerve or interfere with its blood supply.
Rarely, scotomata are . One important variety of bilateral scotoma may occur when a pituitary tumour begins to compress the optic chiasm (as distinct from a single optic nerve) and produces a bitemporal paracentral scotoma, and later, when the tumor enlarges, the scotomas extend out to the periphery to cause the characteristic bitemporal hemianopsia. This type of visual-field defect tends to be obvious to the person experiencing it but often evades early objective diagnosis, as it is more difficult to detect by cursory clinical examination than the classical or textbook bitemporal peripheral hemianopia and may even elude sophisticated electronic modes of visual-field assessment.
In a pregnant woman, scotomata can present as a symptom of severe preeclampsia, a form of pregnancy-induced hypertension. Similarly, scotomata may develop as a result of the increased intracranial pressure that occurs in malignant hypertension.
The scotoma is also caused by the aminoglycoside antibiotics mainly by Streptomycin.
Distortion of vision refers to straight lines not appearing straight, but instead bent, crooked, or wavy. Usually this is caused by distortion of the retina itself. This distortion can herald a loss of vision in macular degeneration, so anyone with distorted vision should seek medical attention by an ophthalmologist promptly. Other conditions leading to swelling of the retina can cause this distortion, such as macular edema and central serous chorioretinopathy.
An Amsler grid can be supplied by an ophthalmologist so that the vision can be monitored for distortion in people who may be predisposed to this problem.
Tunnel vision implies that the peripheral vision, or side vision, is lost, while the central vision remains. Thus, the vision is like looking through a tunnel, or through a paper towel roll. Some disorders that can cause this include:
Glaucoma - severe glaucoma can result in loss of nearly all of the peripheral vision, with a small island of central vision remaining. Sometimes even this island of vision can be lost as well.
Retinitis pigmentosa - This is usually a hereditary disorder which can be part of numerous syndromes. It is more common in males. The peripheral retina develops pigmentary deposits, and the peripheral vision gradually becomes worse and worse. The central vision can be affected eventually as well. People with this problem may have trouble getting around in the dark. Cataract can be a complication as well. There is no known treatment for this disorder, and supplements of Vitamin A have not been proven to help.
Punctate Inner Choroidopathy - This condition is where vessels gro (( material is missing ))
Stroke - a stroke involving both sides of the visual part of the brain may wipe out nearly all of the peripheral vision. Fortunately, this is a very rare occurrence
Childhood blindness is an important cause contributing to the burden of blindness. Blindness in children can be defined as a visual acuity of <3/60 in the eye with better vision of a child under 16 years of age. This generally means that the child cannot see something three feet (about one meter) away, that another child could see if it was 60 feet (about 20 meters) away.
There are many causes of blindness in children. Blindness may be due to genetic mutations, birth defects, premature birth, nutritional deficiencies, infections, injuries, and other causes. Severe retinopathy of prematurity (ROP), cataracts and refractive error are also causes.
The most frequently affected parts of the eyes are:
- Whole globe (36%)
- Cornea (36%)
- Lens (11%)
- Retina (6%)
- Optic nerve (5%)
- Uvea (2%)
Based on clinical appearance, color blindness may be described as total or partial. Total color blindness is much less common than partial color blindness. There are two major types of color blindness: those who have difficulty distinguishing between red and green, and who have difficulty distinguishing between blue and yellow.
Immunofluorescent imaging is a way to determine red–green color coding. Conventional color coding is difficult for individuals with red–green color blindness (protanopia or deuteranopia) to discriminate. Replacing red with magenta or green with turquoise improves visibility for such individuals.
The different kinds of inherited color blindness result from partial or complete loss of function of one or more of the different cone systems. When one cone system is compromised, dichromacy results. The most frequent forms of human color blindness result from problems with either the middle or long wavelength sensitive cone systems, and involve difficulties in discriminating reds, yellows, and greens from one another. They are collectively referred to as "red–green color blindness", though the term is an over-simplification and is somewhat misleading. Other forms of color blindness are much more rare. They include problems in discriminating blues from greens and yellows from reds/pinks, and the rarest forms of all, complete color blindness or "monochromacy", where one cannot distinguish any color from grey, as in a black-and-white movie or photograph.
Protanopes, deuteranopes, and tritanopes are dichromats; that is, they can match any color they see with some mixture of just two primary colors (whereas normally humans are trichromats and require three primary colors). These individuals normally know they have a color vision problem and it can affect their lives on a daily basis. Two percent of the male population exhibit severe difficulties distinguishing between red, orange, yellow, and green. A certain pair of colors, that seem very different to a normal viewer, appear to be the same color (or different shades of same color) for such a dichromat. The terms protanopia, deuteranopia, and tritanopia come from Greek and literally mean "inability to see ("anopia") with the first ("prot-"), second ("deuter-"), or third ("trit-") [cone]", respectively.
Anomalous trichromacy is the least serious type of color deficiency. People with protanomaly, deuteranomaly, or tritanomaly are trichromats, but the color matches they make differ from the normal. They are called anomalous trichromats. In order to match a given spectral yellow light, protanomalous observers need more red light in a red/green mixture than a normal observer, and deuteranomalous observers need more green. From a practical standpoint though, many protanomalous and deuteranomalous people have very little difficulty carrying out tasks that require normal color vision. Some may not even be aware that their color perception is in any way different from normal.
Protanomaly and deuteranomaly can be diagnosed using an instrument called an anomaloscope, which mixes spectral red and green lights in variable proportions, for comparison with a fixed spectral yellow. If this is done in front of a large audience of males, as the proportion of red is increased from a low value, first a small proportion of the audience will declare a match, while most will see the mixed light as greenish; these are the deuteranomalous observers. Next, as more red is added the majority will say that a match has been achieved. Finally, as yet more red is added, the remaining, protanomalous, observers will declare a match at a point where normal observers will see the mixed light as definitely reddish.
There are many causes of blurred vision:
- Use of atropine or other anticholinergics
- Presbyopia—Difficulty focusing on objects that are close. Common in the elderly. (Accommodation tends to decrease with age.)
- Cataracts—Cloudiness over the eye's lens, causing poor night-time vision, halos around lights, and sensitivity to glare. Daytime vision is eventually affected. Common in the elderly.
- Glaucoma—Increased pressure in the eye, causing poor night vision, blind spots, and loss of vision to either side. A major cause of blindness. Glaucoma can happen gradually or suddenly—if sudden, it is a medical emergency.
- Diabetes—Poorly controlled blood sugar can lead to temporary swelling of the lens of the eye, resulting in blurred vision. While it resolves if blood sugar control is reestablished, it is believed repeated occurrences promote the formation of cataracts (which are not temporary).
- Diabetic retinopathy—This complication of diabetes can lead to bleeding into the retina. Another common cause of blindness.
- Hypervitaminosis A—Excess consumption of vitamin A can cause blurred vision.
- Macular degeneration—Loss of central vision, blurred vision (especially while reading), distorted vision (like seeing wavy lines), and colors appearing faded. The most common cause of blindness in people over age 60.
- Eye infection, inflammation, or injury.
- Sjögren's syndrome, a chronic autoimmune inflammatory disease that destroys moisture producing glands, including lacrimal (tear)
- Floaters—Tiny particles drifting across the eye. Although often brief and harmless, they may be a sign of retinal detachment.
- Retinal detachment—Symptoms include floaters, flashes of light across your visual field, or a sensation of a shade or curtain hanging on one side of your visual field.
- Optic neuritis—Inflammation of the optic nerve from infection or multiple sclerosis. You may have pain when you move your eye or touch it through the eyelid.
- Stroke or transient ischemic attack
- Brain tumor
- Toxocara—A parasitic roundworm that can cause blurred vision
- Bleeding into the eye
- Temporal arteritis—Inflammation of an artery in the brain that supplies blood to the optic nerve.
- Migraine headaches—Spots of light, halos, or zigzag patterns are common symptoms prior to the start of the headache. A retinal migraine is when you have only visual symptoms without a headache.
- Myopia—Blurred vision may be a systemic sign of local anaesthetic toxicity
- Reduced blinking—Lid closure that occurs too infrequently often leads to irregularities of the tear film due to prolonged evaporation, thus resulting in disruptions in visual perception.
- Carbon monoxide poisoning—Reduced oxygen delivery can effect many areas of the body including vision. Other symptoms caused by CO include vertigo, hallucination and sensitivity to light.
In almost all cases, color blind people retain blue–yellow discrimination, and most color-blind individuals are anomalous trichromats rather than complete dichromats. In practice, this means that they often retain a limited discrimination along the red–green axis of color space, although their ability to separate colors in this dimension is reduced. Color blindness very rarely refers to complete monochromatism.
Dichromats often confuse red and green items. For example, they may find it difficult to distinguish a Braeburn apple from a Granny Smith or red from green of traffic lights without other clues—for example, shape or position. Dichromats tend to learn to use texture and shape clues and so may be able to penetrate camouflage that has been designed to deceive individuals with normal color vision.
Colors of traffic lights are confusing to some dichromats as there is insufficient apparent difference between the red/amber traffic lights and sodium street lamps; also, the green can be confused with a grubby white lamp. This is a risk on high-speed undulating roads where angular cues cannot be used. British Rail color lamp signals use more easily identifiable colors: The red is blood red, the amber is yellow and the green is a bluish color. Most British road traffic lights are mounted vertically on a black rectangle with a white border (forming a "sighting board") and so dichromats can more easily look for the position of the light within the rectangle—top, middle or bottom. In the eastern provinces of Canada horizontally mounted traffic lights are generally differentiated by shape to facilitate identification for those with color blindness. In the United States, this is not done by shape but by position, as the red light is always on the left if the light is horizontal, or on top if the light is vertical. However, a single flashing light (red indicating cars must stop, yellow for caution/yield) is indistinguishable, but these are rare.
Vision in the affected eye is impaired, the degree of which depends on the size of the defect, and typically affects the visual field more than visual acuity. Additionally, there is an increased risk of serous retinal detachment, manifesting in 1/3 of patients. If retinal detachment does occur, it is usually not correctable and all sight is lost in the affected area of the eye, which may or may not involve the macula.
A blind spot, scotoma, is an obscuration of the visual field. A particular blind spot known as the "physiological blind spot", "blind point", or "punctum caecum" in medical literature, is the place in the visual field that corresponds to the lack of light-detecting photoreceptor cells on the optic disc of the retina where the optic nerve passes through the optic disc. Because there are no cells to detect light on the optic disc, the corresponding part of the field of vision is invisible. Some process in our brains interpolates the blind spot based on surrounding detail and information from the other eye, so we do not normally perceive the blind spot.
Although all vertebrates have this blind spot, cephalopod eyes, which are only superficially similar, do not. In them, the optic nerve approaches the receptors from behind, so it does not create a break in the retina.
The first documented observation of the phenomenon was in the 1660s by Edme Mariotte in France. At the time it was generally thought that the point at which the optic nerve entered the eye should actually be the most sensitive portion of the retina; however, Mariotte's discovery disproved this theory.
The blind spot is located about 12–15° temporally and 1.5° below the horizontal and is roughly 7.5° high and 5.5° wide.
There is another retinal disease in Briards known as hereditary retinal dysplasia. These dogs are night blind from birth, and day vision varies. Puppies affected often have nystagmus. It is also known as lipid retinopathy.
The most common sign of CEA is the presence of an area of undeveloped choroid (appearing as a pale spot) lateral to the optic disc. The choroid is a collection of blood vessels supplying the retina. CEA can also cause retinal or scleral coloboma, coloboma of the optic disc, retinal detachment, or intraocular hemorrhage. It can be diagnosed by fundoscopy by the age of six or seven weeks. Severe cases may be blind.
Buphthalmos in itself is merely a clinical sign and does not generate symptoms. Patients with glaucoma often initially have no symptoms; later, they can exhibit excessive tearing (lacrimation) and extreme sensitivity to light (photophobia). On ophthalmologic exam, one can detect increased intraocular pressure, distortion of the optic disc, and corneal edema, which manifests as haziness.
Other symptoms include a prominent eyeball, Haab's striae in the Descemet's membrane of the cornea, an enlarged cornea, and myopia.
Mobility can be difficult for people with homonymous hemianopsia. “Patients frequently complain of bumping into obstacles on the side of the field loss, thereby bruising their arms and legs.”
People with homonymous hemianopsia often experience discomfort in crowds. “A patient with this condition may be unaware of what he or she cannot see and frequently bumps into walls, trips over objects or walks into people on the side where the visual field is missing.”
A related phenomenon is Hemispatial neglect, the possible neglect of the right or left. The patient is not conscious of its existence. The right side of the face is not shaven, make up is applied to one side of the face only and only half of a plate of food is eaten. This, however, is not necessarily due to a sensory abnormality, and is therefore distinct from hemianopsia.
Hemianopsia or hemianopia is a visual field loss on the left or right side of the vertical midline. It can affect one eye but usually affects both eyes. Homonymous hemianopsia, or homonymous hemianopia, is hemianopic visual field loss on the same side of both eyes. Homonymous hemianopsia occurs because the right half of the brain has visual pathways for the left hemifield of both eyes, and the left half of the brain has visual pathways for the right hemifield of both eyes. When one of these pathways is damaged, the corresponding visual field is lost.
Optic nerve damage is progressive and insidious. Eventually 75% of patients will develop some peripheral field defects. These can include nasal step defects, enlarged blind spots, arcuate scotomas, sectoral field loss and altitudinal defects. Clinical symptoms correlate to visibility of the drusen. Central vision loss is a rare complication of bleeding from peripapillar choroidal neovascular membranes. Anterior ischemic optic neuropathy (AION) is a potential complication.
Eye floaters and loss of accommodation are among the earliest symptoms. The disease may progress to severe uveitis with pain and photophobia. Commonly the eye remains relatively painless while the inflammatory disease spreads through the uvea, where characteristic focal infiltrates in the choroid named Dalén-Fuchs nodules can be seen. The retina, however, usually remains uninvolved, although perivascular cuffing of the retinal vessels with inflammatory cells may occur. Papilledema, secondary glaucoma, vitiligo, and poliosis of the eyelashes may accompany SO.
In most patients, optic disc drusen are an incidental finding. It is important to differentiate them from other conditions that present with optic disc elevation, especially papilledema, which could imply raised intracranial pressure or tumors. True papilledema may present with exudates or cotton-wool spots, unlike ODD. The optic disc margins are characteristically irregular in ODD but not blurred as there is no swelling of the retinal nerve fibers. Spontaneous venous pulsations are present in about 80 percent of patients with ODD, but absent in cases of true disc edema. Other causes of disc elevation clinicians must exclude may be: hyaloid traction, epipapillary glial tissue, myelinated nerve fibres, scleral infiltration, vitreopapillary traction and high hyperopia. Disorders associated with disc elevation include: Alagille syndrome, Down syndrome, Kenny-Caffey syndrome, Leber Hereditary Optic Neuropathy and linear nevus sebaceous syndrome.
This type of retinoschisis is very common with a prevalence of up to 7 percent in normal persons. Its cause is unknown. It can easily be confused with retinal detachment by the non-expert observer and in difficult cases even the expert may have difficulty differentiating the two. Such differentiation is important since retinal detachment almost always requires treatment while retinoschisis never itself requires treatment and leads to retinal detachment (and hence to visual loss) only occasionally. Unfortunately one still sees cases of uncomplicated retinoschisis treated by laser retinopexy or cryopexy in an attempt to stop its progression towards the macula. Such treatments are not only ineffective but unnecessarily risk complications. There is no documented case in the literature of degenerative retinoschisis itself (as opposed to the occasional situation of retinal detachment complicating retinoschisis) in which the splitting of the retina has progressed through the fovea. There is no clinical utility in differentiating between typical and reticular retinoschisis. Degenerative retinoschisis is not known to be a genetically inherited condition.
There is always vision loss in the region of the schisis as the sensory retina is separated from the ganglion layer. But like the loss is in the periphery, it goes unnoticed. It is the very rare schisis that encroaches on the macula where retinopexy is then properly used.
The first noticeable signs of the syndrome usually do not appear until after the first twelve months of the child’s life. The child usually has severe balance issues as he or she learns to sit or walk, often leaning or tilting the head toward the good eye to correct the brain’s skewed perception of the world. Often the child will fall in the same direction while walking or run into objects that are placed on his or her blind side. Additionally, family members may notice a white reflex in the pupil of an affected child instead of the normal red reflex when taking photographs. The presence of this phenomenon is dependent on the degree of the coloboma, with larger colobomas more likely to manifest this particular phenomenon.
This anomaly must be confirmed through pupillary dilation and examination of the optic disc, as the symptoms alone do not constitute a diagnosis.
People with optic nerve colobomas live relatively normal lives. Although non-prescription glasses should be worn for eye protection, this syndrome does not usually prevent the individual from living a normal life, driving cars, playing sports, reading, etc. Certain activities, however, may be more difficult for patients with optic nerve colobomas due to a compromised view of the world. Like most other eye conditions, a diagnosis of optic nerve coloboma precludes a person from certain occupations.
Retinoschisis is an eye disease characterized by the abnormal splitting of the retina's neurosensory layers, usually in the outer plexiform layer. Most common forms are asymptomatic, some rarer forms result in a loss of vision in the corresponding visual field.
Collie eye anomaly (CEA) is a congenital, inherited, bilateral eye disease of dogs, which affects the retina, choroid, and sclera. It can be a mild disease or cause blindness. CEA is caused by a simple autosomal recessive gene defect. There is no treatment.