Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
Symptoms are related to defects in connective tissue.
- Congenital anterior dislocation of the knees
- Dislocation of hips and shoulders
- Flattened facial appearance
- Prominent forehead
- Depressed nasal bridge
- Club foot
- Cervical kyphosis
These symptoms were found in rare cases of Larsen syndrome.
- Cataracts
- Cleft palate
- Extra bones of wrist
- Malocclusion
- Microdontia and hypodontia
- Complete agenesis of anus
- uterus
- Bifid tongue
Robinow noted the resemblance of affected patients' faces to that of a fetus, using the term "fetal facies" to describe the appearance of a small face and widely spaced eyes. Clinical features also may include a short, upturned nose, a prominent forehead, and a flat nasal bridge. The upper lip may be "tented", exposing dental crowding, "tongue tie", or gum hypertrophy.
Though the eyes do not protrude, abnormalities in the lower eyelid may give that impression. Surgery may be necessary if the eyes cannot close fully. In addition, the ears may be set low on the head or have a deformed pinna.
Patients suffer from dwarfism, short lower arms, small feet, and small hands. Fingers and toes may also be abnormally short and laterally or medially bent. The thumb may be displaced and some patients, notably in Turkey, experience ectrodactyly. All patients often suffer from vertebral segmentation abnormalities. Those with the dominant variant have, at most, a single butterfly vertebra. Those with the recessive form, however, may suffer from hemivertebrae, vertebral fusion, and rib anomalies. Some cases resemble Jarcho-Levin syndrome or spondylocostal dysostosis.
Genital defects characteristically seen in males include a micropenis with a normally developed scrotum and testes. Sometimes, testicles may be undescended, or the patient may suffer from hypospadias. Female genital defects may include a reduced size clitoris and underdeveloped labia minora. Infrequently, the labia majora may also be underdeveloped. Some research has shown that females may experience vaginal atresia or haematocolpos.
The autosomal recessive form of the disorder tends to be much more severe. Examples of differences are summarized in the following table:
Phenotypic expression varies greatly between individuals with CFND. Some of the more prominent characteristics are:
- Craniosynostosis of the coronal suture(s) (fusion of the coronal sutures),
- Orbital hypertelorism (increased interocular distance),
- Bifid nasal tip,
- Dry frizzy curled hair,
- Longitudinal ridging and / or splitting of the nails,
- Facial Asymmetry.
Other characteristics that are less frequently seen are: broad nasal base, low anterior hair line, low set ears, crowding of the teeth, maxillary hypoplasia, rounded and sloping shoulders, pectus excavatum, scoliosis, high arched palate, orbital dystopia, low implant of the breasts with asymmetric nipples and volume, webbed neck, hand or foot abnormalities such as clinodactyly (most common is a curved 5th finger) and cutaneous syndactyly (webbed fingers / toes).
Females are more commonly and usually more severely affected than males. Males can however have (some of) the same symptoms as females, but this is not frequently seen. Most males have mild symptoms such as hypertelorism and a broad nasal base with bifid nose, but can also be a carrier of the mutation yet stay clinically unaffected.
EEM syndrome exhibits a combination of prominent symptoms and features. These include: ectodermal dysplasia (systemic malformations of ectodermal tissues), ectrodactyly ("lobster claw" deformity in the hands and feet), macular dystrophy (a progressive eye disease), syndactyly (webbed fingers or toes), hypotrichosis (a type of hair-loss), and dental abnormalities (hypodontia).
Ectodermal dysplasia is characterized by absent sweat glands resulting in dry (hypohydrotic), often scale-like skin, sparse and usually coarse scalp hair that is often blonde, sparse eyebrows and eyelashes, and small brittle nails. In addition, abnormalities of ectodermal derivatives, neuroectodermal derivatives, and mesectodermal derivatives are often found. The ectodermal derivative abnormalities can affect the epidermis including mammary, pituitary and sweat glands, as well as hairs, dental enamel, nails, lens, and the internal ear. Neuroectodermal derivatives that can be affected include sensory placodes, cutaneous pigmental cells, and hair buds. Mesectodermal derivatives affected can include the dermis, hypodermis, dentin, head muscles and conjunctival cells, cervicofacial vascular endothelial cells, and part of the maxillofacial skeleton.
The hypohydrotic symptoms of ectodermal dysplasia described above are evidenced not only in the skin of affected individuals, but also in their phonation and voice production. Because the vocal folds may not be as hydrated as is necessary during the adduction phase of vocal fold vibration (due to lack of lubrication), a complete seal may not be accomplished between the folds and mucosal wave movement may be disrupted. This results in air escapement between the folds and the production of breathy voice, which often accompanies the skin abnormalities of ectodermal dysplasia.
Ectrodactyly involves the deficiency or absence of one or more central digits of the hand or foot and is also known as split hand–split foot malformation (SHFM). The hands and feet of people with ectrodactyly are often described as "claw-like" and may include only the thumb and one finger (usually either the little finger, ring finger, or a syndactyly of the two) with similar abnormalities of the feet.
Ectodermal dysplasia describes abnormalities of structures derived from the embryonic ectoderm. These abnormalities affect both the superficial ectodermal layer, as well as the mesectodermal layer constituted by the neural crest.
Craniofrontonasal dysplasia (craniofrontonasal syndrome, craniofrontonasal dysostosis, CFND) is a very rare X-linked malformation syndrome caused by mutations in the ephrin-B1 gene (EFNB1). Phenotypic expression varies greatly amongst affected individuals, where females are more commonly and generally more severely affected than males.
Common physical malformations are: craniosynostosis of the coronal suture(s), orbital hypertelorism, nasal tip, dry frizzy curled hair, longitudinal ridging and/or splitting of the nails, and facial asymmetry.
The diagnosis CFND is determined by the presence of a mutation in the EFNB1 gene. Physical characteristics may play a supportive role in establishing the diagnosis.
The treatment is always surgical and is based on each patients specific phenotypic presentation.
Robinow syndrome is an extremely rare genetic disorder characterized by short-limbed dwarfism, abnormalities in the head, face, and external genitalia, as well as vertebral segmentation. The disorder was first described in 1969 by human geneticist Meinhard Robinow, along with physicians Frederic N. Silverman and Hugo D. Smith, in the "American Journal of Diseases of Children". By 2002, over 100 cases had been documented and introduced into medical literature.
Two forms of the disorder exist, dominant and recessive, of which the former is more common. Patients with the dominant version often suffer moderately from the aforementioned symptoms. Recessive cases, on the other hand, are usually more physically marked, and individuals may exhibit more skeletal abnormalities. The recessive form is particularly frequent in Turkey. However, this can likely be explained by a common ancestor, as these patients' families can be traced to a single town in Eastern Turkey. Clusters of the autosomal recessive form have also been documented in Oman and Czechoslovakia.
The syndrome is also known as Robinow-Silverman-Smith syndrome, Robinow dwarfism, fetal face, fetal face syndrome, fetal facies syndrome, acral dysostosis with facial and genital abnormalities, or mesomelic dwarfism-small genitalia syndrome. The recessive form was previously known as Covesdem syndrome.
Antley–Bixler syndrome presents itself at birth or prenatally. Features of the disorder include brachycephaly (flat forehead), craniosynostosis (complete skull-joint closure) of both coronal and lambdoid sutures, facial hypoplasia (underdevelopment); bowed ulna (forearm bone) and femur (thigh bone), synostosis of the radius (forearm bone), humerus (upper arm bone), and trapezoid (hand bone); camptodactyly (fused interphalangeal joints in the fingers), thin ilial wings (outer pelvic plate), and renal malformations.
Other symptoms, such as cardiac malformations, proptotic exophthalmos (bulging eyes), arachnodactyly (spider-like fingers), as well as nasal, anal, and vaginal atresia (occlusion) have been reported.
The three most common symptoms of Opitz G/BBB syndrome (both type I & II) are hypertelorism (exceptionally wide-spaced eyes), laryngo-tracheo-esophalgeal defects (including clefts and holes in the palate, larynx, trachea and esophagus) and hypospadias (urinary openings in males not at the tip of the penis) (Meroni, Opitz G/BBB syndrome, 2012). Abnormalities in the larynx, trachea and esophagus can cause significant difficulty breathing and/or swallowing and can result in reoccurring pneumonia and life-threatening situations. Commonly, there may be a gap between the trachea and esophagus, referred to as a laryngeal cleft; which can allow food or fluid to enter the airway and make breathing and eating a difficult task.
Genital abnormalities like a urinary opening under the penis (hypospadias), undescended testes (cryptorchidism), underdeveloped scrotum and a scrotum divided into two lobes (bifid scrotum) can all be commonplace for males with the disease.
Developmental delays of the brain and nervous system are also common in both types I and II of the disease. 50% of people with Opitz G/BBB Syndrome will experience developmental delay and mild intellectual disability. This can impact motor skills, speech and learning capabilities. Some of these instances are likened to autistic spectrum disorders. Close to half of the people with Opitz G/BBB Syndrome also have a cleft lip (hole in the lip opening) and possibly a cleft palate (hole in the roof of the mouth), as well. Less than half of the people diagnosed have heart defects, imperforate anus (obstructed anal opening), and brain defects. Of all the impairments, female carriers of X-linked Type I Opitz G/BBB Syndrome usually only have ocular hypertelorism.
ADULT syndrome features include ectrodactyly, syndactyly, excessive freckling, lacrimal duct anomalies, dysplastic nails, hypodontia, hypoplastic breasts and nipples, hypotrichosis, hypohidrosis, broad nasal bridge, midfacial hypoplasia, exfoliative dermatitis, and xerosis. The lack of facial clefting and ankyloblepharon are important because they exist in ectrodactyly–ectodermal dysplasia–cleft syndrome (EEC) but not in ADULT syndrome.
Antley–Bixler syndrome, also called trapezoidocephaly-synostosis syndrome, is a rare, very severe autosomal recessive congenital disorder characterized by malformations and deformities affecting the majority of the skeleton and other areas of the body.
X-linked type I Opitz G/BBB Syndrome is diagnosed on clinical findings, but those findings can vary greatly: even within the same family. Manifestations of X-linked type I are classified in the frequent/major findings and minor findings that are found in less than 50% of individuals.
The three major findings that suggest a person has X-linked Type I Opitz G/BBB Syndrome:
1. Ocular hypertelorism (~100% cases)
2. Hypospadias (85-90% cases)
3. Laryngotracheoesophageal abnormalities (60-70%)
Minor findings found in less than 50% of individuals:
1. Developmental delay (especially intellectually)
2. Cleft lip/palate
3. Congenital heart defects
4. Imperforate (blocked) anus
5. Brain defects (especially corpus callosum)
In 1989, Hogdall used ultrasonographs to diagnose X-linked Type I Opitz G/BBB Syndrome after 19 weeks of pregnancy, by identifying hypertelorism (widely-spaced eyes) and hypospadias (irregular urinary tract openings in the penis).
There is also molecular genetic testing available to identify mutations leading to Opitz G/BBB Syndrome. X-linked Type I testing must be done on MID1, since this is the only gene that is known to cause Type I Opitz G/BBB Syndrome. Two different tests can be performed: sequence analysis and deletion/duplication analysis. In the sequence analysis a positive result would detect 15-50% of the DNA sequence mutated, while a deletion/duplication positive result would find deletion or duplication of one or more exons of the entire MID1 gene.
Most people with this condition have extra fingers and/or toes (polydactyly), and the skin between some fingers or toes may be fused (cutaneous syndactyly). An abnormal growth in the brain called a hypothalamic hamartoma is characteristic of this disorder. In many cases, these growths do not cause any medical problems; however, some hypothalamic hamartomas lead to seizures or hormone abnormalities that can be life-threatening in infancy. Other features of Pallister–Hall syndrome include a malformation of the airway called a bifid epiglottis, laryngeal cleft, an obstruction of the anal opening (imperforate anus), and kidney abnormalities. Although the signs and symptoms of this disorder vary from mild to severe, only a small percentage of affected people have serious complications.
Individuals affected by ischiopatellar dysplasia commonly have abnormalities of the patella and pelvic girdle, such as absent or delayed patellar and ischial ossification as well as infra-acetabular axe-cut notches. Patellae are typically absent or small in these individuals, when patellae are present they are small and laterally displaced or dislocated. In addition, abnormalities in other parts of their skeleton and dysmorphic features are common in those affected. Other features that have been identified in patients with ischiopatellar dysplasia include foot anomalies, specifically flat feet (pes planus), syndactylism of the toes, short fourth and fifth toes, and a large gap between the first and second toes, femur anomalies, cleft palate, and craniofacial dysmorphisms.
EEM syndrome (or Ectodermal dysplasia, Ectrodactyly and Macular dystrophy syndrome) is an autosomal recessive congenital malformation disorder affecting tissues associated with the ectoderm (skin, hair, nails, teeth), and also the hands, feet and eyes.
Classification is performed by using x-ray imaging to see the bone structures.
As noted above, the hypothalamic hamartoma can cause seizures.
The most common types of seizures that occur are known as gelastic epilepsy.
The term "gelastic" originates from the Greek word ""gelos" which means "laughter". Seizures may begin at any age but usually before three or four years of age. The seizures usually start with laughter and the laughter is often described as being "hollow" or "empty" and not very pleasant. The laughter occurs suddenly, comes on for no obvious reason and is usually completely out of place. The most common areas of the brain which give rise to gelastic seizures are the hypothalamus (a small but extremely important structure deep in the centre of the brain), the temporal lobes and the frontal lobes. If the child has gelastic seizures and precocious puberty, then it is likely that the child will be found to have a hypothalamic hamartoma (a hamartoma in the hypothalamus part of the brain).
Acro–dermato–ungual–lacrimal–tooth (ADULT) syndrome is a rare genetic disease. ADULT syndrome is an autosomal dominant form of ectodermal dysplasia, a group of disorders that affects the hair, teeth, nails, sweat glands, and extremities. The syndrome arises from a mutation in the TP63 gene. This disease was previously thought to be a form of ectrodactyly–ectodermal dysplasia–cleft syndrome (EEC), but was classified as a different disease in 1993 by Propping and Zerres.
The syndromes associated with central polydactyly are:
Bardet–Biedl syndrome,
Meckel syndrome,
Pallister–Hall syndrome,
Legius syndrome,
Holt–Oram syndrome,
Also, central polydactyly can be associated with syndactyly and cleft hand.
Other syndromes including polydactyly include acrocallosal syndrome, basal cell nevus syndrome, Biemond syndrome, ectrodactyly-ectodermal dysplasias-cleft lip/palate syndrome, mirror hand deformity, Mohr syndrome, oral-facial-digital syndrome, Rubinstein-Taybi syndrome, short rib polydactyly, and VATER association.
It can also occur with a triphalangeal thumb.
Individuals affected by this disorder appear normal at birth. As the infant grows, however, their arms and legs do not develop properly and their body becomes thicker and shorter than normal The following are characteristics consistent with this condition:
- Brachydactyly syndrome
- Short stature
- Micromelia
- Skeletal dysplasia
- Abnormality of femur
Ectrodactyly, split hand, cleft hand, derived from the Greek "ektroma" (abortion) and "daktylos" (finger) involves the deficiency or absence of one or more central digits of the hand or foot and is also known as split hand/split foot malformation (SHFM). The hands and feet of people with ectrodactyly are often described as "claw-like" and may include only the thumb and one finger (usually either the little finger, ring finger, or a syndactyly of the two) with similar abnormalities of the feet.
It is a rare form of a congenital disorder in which the development of the hand is disturbed. It is a type I failure of formation – longitudinal arrest. The central ray of the hand is affected and usually appears without proximal deficiencies of nerves, vessels, tendons, muscles and bones in contrast to the radial and ulnar deficiencies. The cleft hand appears as a V-shaped cleft situated in the centre of the hand. The digits at the borders of the cleft might be syndactilyzed, and one or more digits can be absent. In most types, the thumb, ring finger and little finger are the less affected parts of the hand. The incidence of cleft hand varies from 1 in 90,000 to 1 in 10,000 births depending on the used classification. Cleft hand can appear unilateral or bilateral, and can appear isolated or associated with a syndrome.
Split hand/foot malformation (SHFM) is characterized by underdeveloped or absent central digital rays, clefts of hands and feet, and variable syndactyly of the remaining digits. SHFM is a heterogeneous condition caused by abnormalities at one of multiple loci, including SHFM1 (SHFM1 at 7q21-q22), SHFM2 (Xq26), SHFM3 (FBXW4/DACTYLIN at 10q24), SHFM4 (TP63 at 3q27), and SHFM5 (DLX1 and DLX 2 at 2q31). SHFM3 is unique in that it is caused by submicroscopic tandem chromosome duplications of FBXW4/DACTYLIN. SHFM3 is considered 'isolated' ectrodactyly and does not show a mutation of the tp63 gene.
The classical triad of symptoms that defines 3C syndrome includes certain heart defects, hypoplasia (underdevelopment) of the cerebellum, and cranial dysmorphisms, which can take various forms. The heart defects and cranial dysmorphisms are heterogeneous in individuals who are all classed as having Ritscher-Schinzel syndrome.
Heart defects commonly seen with Ritscher-Schinzel syndrome are associated with the endocardial cushion and are the most important factor in determining a diagnosis. The mitral valve and tricuspid valve of the heart can be malformed, the atrioventricular canal can be complete instead of developing into the interatrial septum and interventricular septum, and conotruncal heart defects, which include tetralogy of Fallot, double outlet right ventricle, transposition of the great vessels, and hypoplastic left heart syndrome. Aortic stenosis and pulmonary stenosis have also been associated with 3C syndrome.
The cranial dysmorphisms associated with 3C syndrome are heterogeneous and include a degree of macrocephaly, a large anterior fontanel, a particularly prominent occiput and forehead, ocular hypertelorism (wide-set eyes), slanted palpebral fissures, cleft palate, a depressed nasal bridge, cleft palate with associated bifid uvula, low-set ears, micrognathia (an abnormally small jaw), brachycephaly (flattened head), and ocular coloboma. Low-set ears are the most common cranial dysmorphism seen in 3C syndrome, and ocular coloboma is the least common of the non-concurrent symptoms (cleft lip co-occurring with cleft palate is the least common).
Cranial dysplasias associated with 3C syndrome are also reflected in the brain. Besides the cerebellar hypoplasia, cysts are commonly found in the posterior cranial fossa, the ventricles and the cisterna magna are dilated/enlarged, and Dandy-Walker malformation is present. These are reflected in the developmental delays typical of the disease. 75% of children with 3C syndrome have Dandy-Walker malformation and hydrocephalus.
Signs and symptoms in other body systems are also associated with 3C syndrome. In the skeletal system, ribs may be absent, and hemivertebrae, syndactyly (fusion of fingers together), and clinodactyly (curvature of the fifth finger) may be present. In the GI and genitourinary systems, anal atresia, hypospadia (misplaced urethra), and hydronephrosis may exist. Adrenal hypoplasia and growth hormone deficiency are associated endocrine consequences of Ritscher-Schinzel syndrome. Some immunodeficiency has also been reported in connection with 3C syndrome.
Many children with the disorder die as infants due to severe congenital heart disease. The proband of Ritscher and Schinzel's original study was still alive at the age of 21.
A fetus with 3C syndrome may have an umbilical cord with one umbilical artery instead of two.
Ischiopatellar dysplasia is a rare autosomal dominant disorder characterized by a hypoplasia of the patellae as well as other bone anomalies, especially concerning the pelvis and feet.