Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The initial affected individual described in 1986 had a complex phenotype, and was later found to have both beta-mannosidosis and Sanfilippo syndrome. People have been described with a wide spectrum of clinical presentations from infants and children with intellectual disability to adults who present with isolated skin findings (angiokeratomas). Most cases are identified in the first year of life with respiratory infections, hearing loss and intellectual disability. Because of its rarity, and non-specific clinical findings, beta-mannosidosis can go undiagnosed until adulthood, where it can present with intellectual disability and behavioral problems, including aggression.
Symptoms range widely in their onset and severity. The onset of the most severe form, type III, begins within the first months of life and includes a quick progression of intellectual disability, liver and spleen enlargement (splenomegaly), hearing loss, respiratory infections and skeletal abnormalities. Often the appearance of an affected individual includes the following facial features: protruding forehead, leveled nasal bridge, small nose and wide mouth. Muscular weakness or spinal abnormalities can occur due to the buildup of storage materials in the muscle. A milder form of alpha-mannosidosis involves mild to moderate intellectual disability which develops during childhood or adolescence.
Beta-mannosidosis, also called lysosomal beta-mannosidase deficiency, is a disorder of oligosaccharide metabolism caused by decreased activity of the enzyme beta-mannosidase. This enzyme is coded for by the gene "MANBA", located at 4q22-25. Beta-mannosidosis is inherited in an autosomal recessive manner. Affected individuals appear normal at birth, and can have a variable clinical presentation. Infantile onset forms show severe neurodegeneration, while some children have intellectual disability. Hearing loss and angiokeratomas are common features of the disease.
A defective alpha-mannosidase enzyme, which normally helps to break down complex sugars derived from glycoproteins in the lysosome, causes sugar build up and impairs cell function. Complete absence of functionality in this enzyme leads to death during early childhood due to deterioration of the central nervous system. Enzymes with low residual activity lead to a milder type of the disease, with symptoms like reduced hearing, mental disabilities, susceptibility to bacterial infections, and skeletal deformities. The course of the disease is progressive.
Alpha-mannosidosis is classified into types I through III based on severity and age of onset. In contrast to the usual classifications scheme of these disorders, type III is the most severe.
Onset of late infantile GM1 is typically between ages 1 and 3 years.
Neurological symptoms include ataxia, seizures, dementia, and difficulties with speech.
Symptoms of early infantile GM1 (the most severe subtype, with onset shortly after birth) may include neurodegeneration, seizures, liver enlargement (hepatomegaly), spleen enlargement (splenomegaly), coarsening of facial features, skeletal irregularities, joint stiffness, distended abdomen, muscle weakness, exaggerated startle response to sound, and problems with gait.
About half of affected patients develop cherry-red spots in the eye.
Children may be deaf and blind by age 1 and often die by age 3 from cardiac complications or pneumonia.
- Autosomal recessive disorder; beta-galactosidase deficiency; neuronal storage of GM1 ganglioside and visceral storage of galactosyl oligosaccharides and keratan sulfate.
- Early psychomotor deterioration: decreased activity and lethargy in the first weeks; never sit; feeding problems - failure to thrive; visual failure (nystagmus noted) by 6 months; initial hypotonia; later spasticity with pyramidal signs; secondary microcephaly develops; decerebrate rigidity by 1 year and death by age 1–2 years (due to pneumonia and respiratory failure); some have hyperacusis.
- Macular cherry-red spots in 50% by 6–10 months; corneal opacities in some
- Facial dysmorphology: frontal bossing, wide nasal bridge, facial edema (puffy eyelids); peripheral edema, epicanthus, long upper lip, microretrognathia, gingival hypertrophy (thick alveolar ridges), macroglossia
- Hepatomegaly by 6 months and splenomegaly later; some have cardiac failure
- Skeletal deformities: flexion contractures noted by 3 months; early subperiosteal bone formation (may be present at birth); diaphyseal widening later; demineralization; thoracolumbar vertebral hypoplasia and beaking at age 3–6 months; kyphoscoliosis. *Dysostosis multiplex (as in the mucopolysaccharidoses)
- 10–80% of peripheral lymphocytes are vacuolated; foamy histiocytes in bone marrow; visceral mucopolysaccharide storage similar to that in Hurler disease; GM1 storage in cerebral gray matter is 10-fold elevated (20–50-fold increased in viscera)
- Galactose-containing oligosacchariduria and moderate keratan sulfaturia
- Morquio disease Type B: Mutations with higher residual beta-galactosidase activity for the GM1 substrate than for keratan sulfate and other galactose-containing oligosaccharides have minimal neurologic involvement but severe dysostosis resembling Morquio disease type A (Mucopolysaccharidosis type 4).
Zellweger syndrome is one of three peroxisome biogenesis disorders which belong to the Zellweger spectrum of peroxisome biogenesis disorders (PBD-ZSD). The other two disorders are neonatal adrenoleukodystrophy (NALD), and infantile Refsum disease (IRD). Although all have a similar molecular basis for disease, Zellweger syndrome is the most severe of these three disorders.
Zellweger syndrome is associated with impaired neuronal migration, neuronal positioning, and brain development. In addition, individuals with Zellweger syndrome can show a reduction in central nervous system (CNS) myelin (particularly cerebral), which is referred to as hypomyelination. Myelin is critical for normal CNS functions, and in this regard, serves to insulate nerve fibers in the brain. Patients can also show postdevelopmental sensorineuronal degeneration that leads to a progressive loss of hearing and vision.
Zellweger syndrome can also affect the function of many other organ systems. Patients can show craniofacial abnormalities (such as a high forehead, hypoplastic supraorbital ridges, epicanthal folds, midface hypoplasia, and a large fontanel), hepatomegaly (enlarged liver), chondrodysplasia punctata (punctate calcification of the cartilage in specific regions of the body), eye abnormalities, and renal cysts. Newborns may present with profound hypotonia (low muscle tone), seizures, apnea, and an inability to eat.
Sandhoff disease symptoms are clinically indeterminable from Tay–Sachs disease. The classic infantile form of the disease has the most severe symptoms and is incredibly hard to diagnose at this early age. The first signs of symptoms begin before 6 months of age and the parents’ notice when the child begins regressing in their development. If the children had the ability to sit up by themselves or crawl they will lose this ability. This is caused by a slow deterioration of the muscles in the child’s body from the buildup of GM2 gangliosides. Since the body is unable to create the enzymes it needs within the central nervous system it is unable to attach to these gangliosides to break them apart and make them non-toxic. With this buildup there are several symptoms that begin to appear such as muscle/motor weakness, sharp reaction to loud noises, blindness, deafness, inability to react to stimulants, respiratory problems and infections, mental retardation, seizures, cherry red spots in the retina, enlarged liver and spleen (hepatosplenomegaly), pneumonia, or bronchopneumonia.
The other two forms of Sandhoff disease have similar symptoms but to a lesser extent. Adult and juvenile forms of Sandhoff disease are more rare than the infantile form. In these cases victims suffer cognitive impairment (retardation) and a loss of muscle coordination that impairs and eventually destroys their ability to walk; the characteristic red spots in the retina also develop. The adult form of the disease, however, is sometimes milder, and may only lead to muscle weakness that impairs walking or the ability to get out of bed.
D-Bifunctional protein deficiency (officially called 17β-hydroxysteroid dehydrogenase IV deficiency) is an autosomal recessive peroxisomal fatty acid oxidation disorder. Peroxisomal disorders are usually caused by a combination of peroxisomal assembly defects or by deficiencies of specific peroxisomal enzymes. The peroxisome is an organelle in the cell similar to the lysosome that functions to detoxify the cell. Peroxisomes contain many different enzymes, such as catalase, and their main function is to neutralize free radicals and detoxify drugs, such as alcohol. For this reason peroxisomes are ubiquitous in the liver and kidney. D-BP deficiency is the most severe peroxisomal disorder, often resembling Zellweger syndrome.
Characteristics of the disorder include neonatal hypotonia and seizures, occurring mostly within the first month of life, as well as visual and hearing impairment. Other symptoms include severe craniofacial disfiguration, psychomotor delay, and neuronal migration defects. Most onsets of the disorder begin in the gestational weeks of development and most affected individuals die within the first two years of life.
Mannosidosis is a deficiency in mannosidase, an enzyme.
There are two types:
- Alpha-mannosidosis
- Beta-mannosidosis
The symptoms of LSD vary, depending on the particular disorder and other variables such as the age of onset, and can be mild to severe. They can include developmental delay, movement disorders, seizures, dementia, deafness, and/or blindness. Some people with LSDhave enlarged livers (hepatomegaly) and enlarged spleens (splenomegaly), pulmonary and cardiac problems, and bones that grow abnormally.
The GM2 gangliosidoses are a group of three related genetic disorders that result from a deficiency of the enzyme beta-hexosaminidase. This enzyme catalyzes the biodegradation of fatty acid derivatives known as gangliosides. The diseases are better known by their individual names.
Beta-hexosaminidase is a vital hydrolytic enzyme, found in the lysosomes, that breaks down lipids. When beta-hexosaminidase is no longer functioning properly, the lipids accumulate in the nervous tissue of the brain and cause problems. Gangliosides are made and biodegraded rapidly in early life as the brain develops. Except in some rare, late-onset forms, the GM2 gangliosidoses are fatal.
All three disorders are rare in the general population. Tay-Sachs disease has become famous as a public health model because an enzyme assay test for TSD was discovered and developed in the late 1960s and early 1970s, providing one of the first "mass screening" tools in medical genetics. It became a research and public health model for understanding and preventing all autosomal genetic disorders.
Tay-Sachs disease, AB variant, and Sandhoff disease might easily have been defined together as a single disease, because the three disorders are associated with failure of the same metabolic pathway and have the same outcome. Classification and naming for many genetic disorders reflects history, because most diseases were first observed and classified based on biochemistry and pathophysiology before genetic diagnosis was available. However, the three GM2 gangliosidoses were discovered and named separately. Each represents a distinct molecular point of failure in a subunit that is required for activation of the enzyme.
Tay–Sachs disease is a rare autosomal recessive genetic disorder that causes a progressive deterioration of nerve cells and of mental and physical abilities that begins around six months of age and usually results in death by the age of four. It is the most common of the GM2 gangliosidoses. The disease occurs when harmful quantities of cell membrane gangliosides accumulate in the brain's nerve cells, eventually leading to the premature death of the cells.
The following signs are associated with the disease
- Abnormal heart development
- Abnormal skeletal development
- Hypermobile joints
- Large fingers
- Knock-knees
- Widely spaced teeth
- Bell-shaped chest (flared ribs)
- Compression of spinal cord
- Enlarged heart
- Dwarfism
- Heart murmur
- below average height for certain age
Patients with Morquio syndrome appear healthy at birth. They often present with spinal deformity, and there is growth retardation and possibly genu valgum in the second or third year of life. A patient with Morquio's syndrome is likely to die at an early age. Symptoms of the disease may include:
- Short stature and short neck (caused by flat vertebrae)
- Moderate kyphosis or scoliosis
- Mild pectus carinatum ("pigeon chest")
- Cervical spine: odontoid hypoplasia, atlanto-axial instability; may be associated with myelopathy with gradual loss of walking ability
- Joint laxity, mild dysostosis multiplex, dysplastic hips, large unstable knees, large elbows and wrists, and flat feet
- The combined abnormalities usually result in a duck-waddling gait
- Mid-face hypoplasia and mandibular protrusion
- Thin tooth enamel
- Corneal clouding
- Mild hepatosplenomegaly
Regarding the life span of people with Morquio, some can die as early as 2 or 3 years old, and some can live up to 60 or 70 years old. The oldest known person with Morquio syndrome type IV A was Kenneth D. Martin, who was born in Osage City, Kansas, USA and was 81 years old at the time of his death
The signs and symptoms of beta-ketothiolase deficiency include vomiting, dehydration, trouble breathing, extreme tiredness, and occasionally convulsions. These episodes are called ketoacidotic attacks and can sometimes lead to coma. Attacks occur when compounds called organic acids (which are formed as products of amino acid and fat breakdown) build up to toxic levels in the blood. These attacks are often triggered by an infection, fasting (not eating), or in some cases, other types of stress.
Sandhoff disease, also known as Sandhoff–Jatzkewitz disease, variant 0 of GM2-Gangliosidosis or Hexosaminidase A and B deficiency, is a lysosomal genetic, lipid storage disorder caused by the inherited deficiency to create functional beta-hexosaminidases A and B. These catabolic enzymes are needed to degrade the neuronal membrane components, ganglioside GM2, its derivative GA2, the glycolipid globoside in visceral tissues, and some oligosaccharides. Accumulation of these metabolites leads to a progressive destruction of the central nervous system and eventually to death. The rare autosomal recessive neurodegenerative disorder is clinically almost indistinguishable from Tay–Sachs disease, another genetic disorder that disrupts beta-hexosaminidases A and S. There are three subsets of Sandhoff disease based on when first symptoms appear: classic infantile, juvenile and adult late onset.
Morquio syndrome (referred to as mucopolysaccharidosis IV, MPS IV, Morquio-Brailsford syndrome, or Morquio) is a rare metabolic disorder in which the body cannot process certain types of mucopolysaccharides. This birth defect, which is autosomal recessive, is thus a lysosomal storage disorder that is usually inherited. In the US, the incidence rate for Morquio is estimated at between 1 in 200,000 and 1 in 300,000 live births.
The build-up or elimination of mucopolysaccharides, rather than processing by their usual biochemical pathways, causes various symptoms. These involve accumulation of keratan sulfate.
Beta-ketothiolase deficiency is a rare, autosomal recessive metabolic disorder in which the body cannot properly process the amino acid isoleucine or the products of lipid breakdown.
The typical age of onset for this disorder is between 6 months and 24 months.
Niemann–Pick type C has a wide clinical spectrum. Affected individuals may have enlargement of the spleen (splenomegaly) and liver (hepatomegaly), or enlarged spleen or liver combined (hepatosplenomegaly), but this finding may be absent in later onset cases. Prolonged jaundice or elevated bilirubin can present at birth. In some cases, however, enlargement of the spleen or liver does not occur for months or years – or not at all. Enlargement of the spleen or liver frequently becomes less apparent with time, in contrast to the progression of other lysosomal storage diseases such as Niemann–Pick disease, Types A and B or Gaucher disease. Organ enlargement does not usually cause major complications.
Progressive neurological disease is the hallmark of Niemann–Pick type C disease, and is responsible for disability and premature death in all cases beyond early childhood. Classically, children with NPC may initially present with delays in reaching normal developmental milestones skills before manifesting cognitive decline (dementia).
Neurological signs and symptoms include cerebellar ataxia (unsteady walking with uncoordinated limb movements), dysarthria (slurred speech), dysphagia (difficulty in swallowing), tremor, epilepsy (both partial and generalized), vertical supranuclear palsy (upgaze palsy, downgaze palsy, saccadic palsy or paralysis), sleep inversion, gelastic cataplexy (sudden loss of muscle tone or drop attacks), dystonia (abnormal movements or postures caused by contraction of agonist and antagonist muscles across joints), most commonly begins with in turning of one foot when walking (action dystonia) and may spread to become generalized, spasticity (velocity dependent increase in muscle tone), hypotonia, ptosis (drooping of the upper eyelid), microcephaly (abnormally small head), psychosis, progressive dementia, progressive hearing loss, bipolar disorder, major and psychotic depression that can include hallucinations, delusions, mutism, or stupor.
In the terminal stages of Niemann–Pick type C disease, the patient is bedridden, with complete ophthalmoplegia, loss of volitional movement and severe dementia.
The majority of patients is initially screened by enzyme assay, which is the most efficient method to arrive at a definitive diagnosis. In some families where the disease-causing mutations are known and in certain genetic isolates, mutation analysis may be performed. In addition, after a diagnosis is made by biochemical means, mutation analysis may be performed for certain disorders.
In addition to genetic tests involving the sequencing of "PEX" genes, biochemical tests have proven highly effective for the diagnosis of Zellweger syndrome and other peroxisomal disorders. Typically, Zellweger syndrome patients show elevated very long chain fatty acids in their blood plasma. Cultured primarily skin fibroblasts obtained from patients show elevated very long chain fatty acids, impaired very long chain fatty acid beta-oxidation, phytanic acid alpha-oxidation, pristanic acid alpha-oxidation, and plasmalogen biosynthesis.
Often symptoms will arise that indicate the body is not absorbing or making the lipoproteins that it needs. These symptoms usually appear "en masse", meaning that they happen all together, all the time. These symptoms come as follows:
- Failure to thrive/Failure to grow in infancy
- Steatorrhea/Fatty, pale stools
- Frothy stools
- Foul smelling stools
- Protruding abdomen
- Intellectual disability/developmental delay
- Developmental coordination disorder, evident by age ten
- Muscle weakness
- Slurred speech
- Scoliosis (curvature of the spine)
- Progressive decreased vision
- Balance and coordination problems
Niemann–Pick type C is a lysosomal storage disease associated with mutations in NPC1 and NPC2 genes. Niemann–Pick type C affects an estimated 1:150,000 people. Approximately 50% of cases present before 10 years of age, but manifestations may first be recognized as late as the sixth decade.
Abetalipoproteinemia affects the absorption of dietary fats, cholesterol, and certain vitamins. People affected by this disorder are not able to make certain lipoproteins, which are molecules that consist of proteins combined with cholesterol and particular fats called triglycerides. This leads to a multiple vitamin deficiency, affecting the fat-soluble vitamin A, vitamin D, vitamin E, and vitamin K. However, many of the observed effects are due to vitamin E deficiency in particular.
The signs and symptoms of abetalipoproteinemia appear in the first few months of life (because pancreatic lipase is not active in this period). They can include failure to gain weight and grow at the expected rate (failure to thrive); diarrhea; abnormal spiny red blood cells (acanthocytosis); and fatty, foul-smelling stools (steatorrhea). The stool may contain large chunks of fat and/or blood. Other features of this disorder may develop later in childhood and often impair the function of the nervous system. They can include poor muscle coordination, difficulty with balance and movement (ataxia), and progressive degeneration of the retina (the light-sensitive layer in the posterior eye) that can progress to near-blindness (due to deficiency of vitamin A, retinol). Adults in their thirties or forties may have increasing difficulty with balance and walking. Many of the signs and symptoms of abetalipoproteinemia result from a severe vitamin deficiency, especially vitamin E deficiency, which typically results in eye problems with degeneration of the spinocerebellar and dorsal column tracts.
3q29 microdeletion syndrome is a rare genetic disorder resulting from the deletion of a segment of chromosome 3. This syndrome was first described in 2005.