Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Vitelliform macular dystrophy causes a fatty yellow pigment (lipofuscin) to build up in cells underlying the macula. The retinal pigment epithelium also degenerates. Over time, the abnormal accumulation of this substance can damage the cells that are critical for clear central vision. As a result, people with this disorder often lose their central vision and may experience blurry or distorted vision, and loss is rarely symmetric. Scotomata appear, first with red light and then for green; finally, relative (or in more serious cases, absolute) scotomata occur with white light. Vitelliform macular dystrophy does not affect side (peripheral) vision or the ability to see at night.
Researchers have described two forms of vitelliform macular dystrophy with similar features. The early-onset form (known as Best disease) usually appears in childhood; however, the onset of symptoms and the severity of vision loss vary widely. The adult-onset form begins later, usually in middle age, and tends to cause relatively mild vision loss. The two forms of vitelliform macular dystrophy each have characteristic changes in the macula that can be detected during an eye examination.
Vitelliform macular dystrophy or vitelliform dystrophy is an irregular autosomal dominant eye disorder which can cause progressive vision loss. This disorder affects the retina, specifically cells in a small area near the center of the retina called the macula. The macula is responsible for sharp central vision, which is needed for detailed tasks such as reading, driving, and recognizing faces. The condition is characterized by yellow (or orange), slightly elevated, round structures similar to the yolk (Latin "vitellus") of an egg.
At birth, there is no sign that a child will develop symptoms of aspartylglucosaminuria. Typically, signs and symptoms become apparent between two and four years of age and become progressively worse as the individual ages. The following signs and symptoms may appear:
- Individuals are more prone to respiratory infections
- Development of scoliosis
- Seizures or difficulty with movement
- Skin and joints may become loose
- Facial features change progressively; this may include:
- Progression of developmental and mental disabilities, including:
- An intellectual peak occurs in the mid-teens and allows a plateau for the disease. Once an individual hits the age of 25-30 the decrease begins again, including:
(Children are physically uncoordinated, but remain able to play sports and do everyday activities until they reach adulthood.)
- During the first year of life inguinal and umbilical hernias are common.
- Less severe symptoms include:
- People with aspartylglucosaminuria may have lower than average height, because they tend to go through puberty earlier.
- Epilepsy may develop in adulthood.
- Finnish studies have shown that life expectancy is shorter than average.
Aspartylglucosaminuria (AGU) is an inherited disease that is characterized by a decline in mental functioning, accompanied by an increase in skin, bone and joint issues.
The disease is caused by a defect in an enzyme known as aspartylglucosaminidase. This enzyme plays a significant role in our bodies because it aids in breaking down certain sugars (for example, oligosaccharides) that are attached to specific proteins (for example, glycoproteins). Aspartylglucosaminuria itself is characterized as a lysosomal disease because it does deal with inadequate activity in an enzyme's function. Aspartylglucosaminidase functions to break down glycoproteins. These proteins are most abundant in the tissues of the body and in the surfaces of major organs, such as the liver, spleen, thyroid and nerves. When glycoproteins are not broken down, aspartylglucosaminidase backs up in the lysosomes along with other substances. This backup causes progressive damage to the tissues and organs.
AON was first described in 1982. It presents with visual loss and signs of optic nerve dysfunction, such as loss of color vision, afferent pupil defect, and sometimes abnormalities of the optic disc. The clinical features of AON can be variable and present in several unilateral or bilateral forms:
- Acute anterior or retrobulbar optic neuritis sometimes associated with pain.
- Anterior or retrobulbar ischemic optic neuropathy not associated with pain.
- Chronic progressive vision loss that mimics a compressive lesion.
The main features that differentiate AON from the more common typical demyelinating optic neuritis is the poor recovery of vision and the chronic or recurrent or bilateral course of AON. Furthermore, the workup for multiple sclerosis including MRI, will be negative. Thus, it may be necessary to diagnose AON after a period of observation, noting the problem is not behaving as expected for demyelinative disease.
Autoimmune optic neuropathy (AON), sometimes called autoimmune optic neuritis, may be a forme fruste of systemic lupus erythematosus (SLE) associated optic neuropathy. AON is more than the presence of any optic neuritis in a patient with an autoimmune process, as it describes a relatively specific clinical syndrome. AON is characterized by chronically progressive or recurrent vision loss associated with serological evidence of autoimmunity. Specifically, this term has been suggested for cases of optic neuritis with serological evidence of vasculitis by positive ANA, despite the lack of meeting criteria for SLE. The clinical manifestations include progressive vision loss that tends to be steroid-responsive and steroid dependent.
Patients with defined SLE that go on to develop optic neuritis should be better identified as lupus optic neuritis.
Schwartz–Jampel syndrome (SJS) is a rare genetic disease caused by a mutation in the HSPG2 gene, which makes the protein perlecan, and causing osteochondrodysplasia associated with myotonia.
Most people with Schwartz–Jampel syndrome have a nearly normal life expectancy.
Symptoms of scleritis include:
- Redness of the sclera and conjunctiva, sometimes changing to a purple hue
- Severe ocular pain, which may radiate to the temple or jaw. The pain is often described as deep or boring.
- Photophobia and tearing
- Decrease in visual acuity, possibly leading to blindness
The pain of episcleritis is less severe than in scleritis. In hyperemia, there is a visible increase in the blood flow to the sclera (hyperaemia), which accounts for the redness of the eye. Unlike in conjunctivitis, this redness will not move with gentle pressure to the conjunctiva.
Kyrle disease symptoms are chronic and have an onset during adulthood between the ages of 30 and 50 years of age. However, there were reported cases of early onset as early as 5 years of age and late onset as late as 75 years of age. The main symptom is the development of small papules into painless lesions that are surrounded by silvery scales. The lesions are painless, however, there is a chance that the patient may experience extreme urges to itch them. In time, these lesions grow up to a radius of 0.75 inch and develop into red-brown nodules with a central plug of keratin. As more lesions develop, they can come together and form larger keratotic plaques. These lesions are usually observed on the lower extremities, however, can also develop on the upper extremities, such as, the arms, the head and the neck. The only parts of the body that Kyrle disease do not form are the palms, soles, and mucous membranes. Lesions may heal spontaneously without treatment, however, new ones will develop in its place.
Other symptoms that may be observed:
- Hyperkeratotic cone-shaped papular plugs
- Hyperkeratotic verrucous plaques
- Diabetes mellitus
- Hepatic insufficiency
- Presence of albumin in the urine
- Excess sugar in the urine
Secondary keratitis or uveitis may occur with scleritis. The most severe complications are associated with necrotizing scleritis.
Relationships between the disease and perlecan deficiency have been studied.
Kyrle disease or hyperkeratosis follicularis et parafollicularis in cutem penetrans is identified as a form of an acquired perforating disease. Other major perforating diseases are elastosis perforans serpiginosa and reactive perforating collagenosis. Recently, however, there is a controversy on categorizing Kyrle disease with perforating dermatosis or a subtype of acquired perforating collagenosis.
Kyrle disease was first described by Josef Kyrle in 1916 when a diabetic woman presented generalized hyperkeratotic nodules. The disease is distinguished by large papules with central keratin plus on the skin, usually on the legs of the patient and is often in conjunction with hepatic, renal or diabetic disorders. It can affect both females and males with a 6:1 ratio. The papules usually show up on the patient with an average age of 30 years. Kyrle disease is a rare disease unless there is a high count of patients with chronic renal failure. The disease seems to be more prevalent in African Americans, which can be correlated to the high incidence of diabetes mellitus and renal failure in the population.
Affected individuals typically present with sudden painful proptosis, redness, and edema. Proptosis will vary according to the degree of inflammation, fibrosis, and mass effect. Occasionally, ptosis, chemosis, motility dysfunction (ophthalmoplegia), and optic neuropathy are seen. In the setting of extensive sclerosis there may be restriction, compression, and destruction of orbital tissue. Symptoms usually develop acutely (hours to days), but have also been seen to develop over several weeks or even months.Malaise, headaches, and nausea may accompany these symptoms. Other unusual presentations described include cystoid macular edema, temporal arteritis, and cluster headaches.
Pediatric IOI accounts for about 17% of cases idiopathic orbital inflammation. The most common sign is proptosis, but redness and pain are also experienced. Presentation varies slightly compared to adults with bilateral involvement, uveitis, disc edema and tissue eosinophilia being more common in this population. The presence of uveitis generally implies a poor outcome for pediatric IOI. Bilateral presentation may have a higher incidence of systemic disease.
Idiopathic orbital inflammatory (IOI) disease, or orbital pseudotumor, refers to a marginated mass-like enhancing soft tissue involving any area of the orbit. It is the most common painful orbital mass in the adult population, and is associated with proptosis, cranial nerve (Tolosa–Hunt syndrome), uveitis, and retinal detachment. Idiopathic orbital inflammatory syndrome, also known as orbital pseudotumor, was first described by Gleason in 1903 and by Busse and Hochhmein. It was then characterized as a distinct entity in 1905 by Birch-Hirschfeld. It is a benign, nongranulomatous orbital inflammatory process characterized by extraocular orbital and adnexal inflammation with no known local or systemic cause. Its diagnosis is of exclusion once neoplasm, primary infection and systemic disorders have been ruled-out. Once diagnosed, it is characterized by its chronicity, anatomic location or histologic subtype.
Idiopathic orbital inflammation has a varied clinical presentation depending on the involved tissue. It can range from a diffuse inflammatory process to a more localized inflammation of muscle, lacrimal gland or orbital fat. Its former name, orbital pseudotumor, is derived due to resemblance to a neoplasm. However, histologically it is characterized by inflammation. Although a benign condition, it may present with an aggressive clinical course with severe vision loss and oculomotor dysfunction.
Hypohidrosis is diminished sweating in response to appropriate stimuli. While hyperhidrosis is a socially troubling but benign condition, hypohidrosis can lead to hyperthermia, heat exhaustion, heat stroke and potentially death. An extreme case of hypohydrosis in which there is a complete absence of sweating and the skin is dry is termed anhidrosis.
The condition manifests itself as attacks lasting from a few minutes to several hours. Episodes only happen when the individual is awake, and they remain conscious throughout the attack. Symptoms are most severe in youth and lessen with age. Sufferers can have multiple attacks on a daily basis or may have periods of weeks or months between attacks. Symptoms experienced during attacks can vary and include dystonia, chorea, athetosis, ballismus, or a combination.
Paroxysmal Nonkinesigenic Dyskinesia (PNKD) is an episodic movement disorder first described by Mount and Reback in 1940 under the name "Familial paroxysmal choreoathetosis". It is a rare hereditary disease that affects various muscular and nervous systems in the body, passing to roughly fifty percent of the offspring.
Hypophosphatasia in childhood has variable clinical expression. As a result of defects in the development of the dental cementum, the deciduous teeth (baby teeth) are often lost fore the age of 5. Frequently, the incisors are lost first; occasionally all of the teeth are lost prematurely. Dental radiographs can show the enlarged pulp chambers and root canals that are characteristic of rickets.
Patients may experience delayed walking, a characteristic waddling gait, stiffness and pain, and muscle weakness (especially in the thighs) consistent with nonprogressive myopathy. Typically, radiographs show defects in calcification and characteristic bony defects near the ends of major long bones. Growth retardation, frequent fractures, and low bone density (osteopenia) are common. In severely-affected infants and young children, cranial bones can fuse prematurely, despite the appearance of open fontanels on radiographic studies. The illusion of open fontanels results from hypomineralization of large areas of the calvarium. Premature bony fusion of the cranial sutures may elevate intracranial pressure.
Adult hypophosphatasia can be associated with rickets, premature loss of deciduous teeth, or early loss of adult dentation followed by relatively good health. Osteomalacia results in painful feet due to poor healing of metatarsal stress fractures. Discomfort in the thighs or hips due to femoral pseudofractures can be distinguished from other types of osteomalacia by their location in the lateral cortices of the femora.
Some patients suffer from calcium pyrophosphate dihydrate crystal depositions with occasional attacks of arthritis (pseudogout), which appears to be the result of elevated endogenous inorganic pyrophosphate (PPi) levels. These patients may also suffer articular cartilage degeneration and pyrophosphate arthropathy. Radiographs reveal pseudofractures in the lateral cortices of the proximal femora and stress fractures, and patients may experience osteopenia, chondrocalcinosis, features of pyrophosphate arthropathy, and calcific periarthritis.
Odontohypophosphatasia is present when dental disease is the only clinical abnormality, and radiographic and/or histologic studies reveal no evidence of rickets or osteomalacia. Although hereditary leukocyte abnormalities and other disorders usually account for this condition, odontohypophosphatasia may explain some “early-onset periodontitis” cases.
Symptoms include mental deterioration, language disorder, transient ischemic attack, muscle ataxia, and impaired movements including change of walk, slowness of movements, and change in posture. These symptoms usually coincide with multiple falls, epilepsy, fainting, and uncontrollable bladder.
Because Binswanger’s disease affects flow processing speed and causes impaired concentration, the ability to do everyday tasks such as managing finances, preparing a meal and driving may become very difficult.
Ethmoid hematoma is a progressive and locally destructive disease of horses. It is indicated by a mass in the paranasal sinuses that resembles a tumor, but is not neoplastic by any means. The origins and causes of the ethmoid hematoma are generally unknown. Large hematomas usually start within the ethmoid labyrinth, and smaller ones tend to begin on the sinus floor.
The hematoma usually extends into the nasal passage. A growing hematoma causes pressure necrosis of the bone surrounding the hematoma, but only on rare occasions does it cause facial distortion. It is most commonly seen in horses older than six years. Mild, persistent, spontaneous, intermittent, and unilateral epistaxis is the most common sign clinically.
In most cases, symptoms present themselves at an advanced stage of disease. They can include but are not limited to:
Nosebleed
Nasal obstruction
Proptosis (displacement of the eye)
Vision changes
Headache
Sweat is readily visualized by a topical indicator such as iodinated starch (Minor test) or sodium alizarin sulphonate, both of which undergo a dramatic colour change when moistened by sweat. A thermoregulatory sweat test can evaluate the body’s response to a thermal stimulus by inducing sweating through a hot box ⁄ room, thermal blanket or exercise. Failure of the topical indicator to undergo a colour change during thermoregulatory sweat testing indicates hypohidrosis, and further tests may be required to localize the lesion.
Magnetic resonance imaging of the brain and ⁄ or spinal cord is the best modality for evaluation when the lesion is suspected to be localized to the central nervous system.
Skin biopsies are useful when anhidrosis occurs as part of a dermatological disorder. Biopsy results may reveal the sweat gland destruction, necrosis or fibrosis, in addition to the findings of the primary dermatological disorder.
An aging-associated disease is a disease that is most often seen with increasing frequency with increasing senescence. Essentially, aging-associated diseases are complications arising from senescence. Age-associated diseases are to be distinguished from the aging process itself because all adult animals age, save for a few rare exceptions, but not all adult animals experience all age-associated diseases. Aging-associated diseases do not refer to age-specific diseases, such as the childhood diseases chicken pox and measles. "Aging-associated disease" is used here to mean "diseases of the elderly". Nor should aging-associated diseases be confused with accelerated aging diseases, all of which are genetic disorders.
Examples of aging-associated diseases are atherosclerosis and cardiovascular disease, cancer, arthritis, cataracts, osteoporosis, type 2 diabetes, hypertension and Alzheimer's disease. The incidence of all of these diseases increases rapidly with aging (increases exponentially with age, in the case of cancer).
Of the roughly 150,000 people who die each day across the globe, about two thirds—100,000 per day—die of age-related causes. In industrialized nations, the proportion is higher, reaching 90%.
The hallmark clinical and laboratory features include high fever, hepatosplenomegaly, lymphadenopathy, pancytopenia, liver dysfunction, disseminated intravascular coagulation, hypofibrinogenemia, hyperferritinemia, and hypertriglyceridemia. Despite marked systemic inflammation, the erythrocyte sedimentation rate (ESR) is paradoxically depressed, caused by low fibrinogen levels. The low ESR helps to distinguish the disorder from a flare of the underlying rheumatic disorder, in which case the ESR is usually elevated. A bone marrow biopsy or aspirate usually shows hemophagocytosis.