Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The main symptom resulting from PCA is a decrease in visuospatial and visuoperceptual capabilities. Because the posterior region of the brain is home to the occipital lobe, which is responsible for visual processing, visual functions are impaired in PCA patients. The atrophy is progressive; early symptoms include difficulty reading, blurred vision, light sensitivity, issues with depth perception, and trouble navigating through space. Additional symptoms include apraxia, a disorder of movement planning, alexia, an impaired ability to read, and visual agnosia, an object recognition disorder. Damage to the ventral, or “what” stream, of the visual system, located in the temporal lobe, leads to the symptoms related to general vision and object recognition deficits; damage to the dorsal, or “where/how” stream, located in the parietal lobe, leads to PCA symptoms related to impaired movements in response to visual stimuli, such as navigation and apraxia.
As neurodegeneration spreads, more severe symptoms emerge, including the inability to recognize familiar people and objects, trouble navigating familiar places, and sometimes visual hallucinations. In addition, patients may experience difficulty making guiding movements towards objects, and may experience a decline in literacy skills including reading, writing, and spelling. Furthermore, if neural death spreads into other anterior cortical regions, symptoms similar to Alzheimer's disease, such as memory loss, may result. PCA patients with significant atrophy in one hemisphere of the brain may experience hemispatial neglect, the inability to see stimuli on one half of the visual field. Anxiety and depression are also common in PCA patients.
Posterior cortical atrophy (PCA), also called Benson's syndrome, is a form of dementia which is usually considered an atypical variant of Alzheimer's disease (AD). The disease causes atrophy of the posterior part of the cerebral cortex, resulting in the progressive disruption of complex visual processing. PCA was first described by D. Frank Benson in 1988.
In rare cases, PCA can be caused by dementia with Lewy bodies and Creutzfeldt–Jakob disease.
PCA usually affects people at an earlier age than typical cases of Alzheimer's disease, with initial symptoms often experienced in people in their mid-fifties or early sixties. This was the case with writer Terry Pratchett (1948-2015), who went public in 2007 about being diagnosed with PCA. In "The Mind's Eye", neurologist Oliver Sacks examines the case of concert pianist Lilian Kallir (1931–2004), who suffered from PCA.
Acute dystonia nearly always develops a few weeks after a dopamine blocking agent/medication has begun or a substantial increase in antipsychotic dosage. An acute dystonic reaction consists of sustained, painful muscular spasms, producing twisting of the trunk/body and abnormal posture. The most frequent occurrences of these spasms have been reported in the neck, tongue, and jaw. Oculogyric crisis and opisthotonus are also very common. Acute effects of dopamine antagonists also include Parkinsons-like symptoms, manifested by bradykinesia, pin rolling tremor, and rigidity of the body. These movements may fluctuate over hours and temporarily dissipate in response to reassurance, and the individual episodes may last minutes to hours. Acute reactions are more common in older patients and females. The pathophysiology underlying these reactions is unknown, but the movements usually occur during the period when blood medication level is dropping. The acute syndromes which occur due to prolonged exposure to a dopamine antagonist are collectively termed extrapyramidal symptoms, EPS.
The predominant symptom of Pisa syndrome is dystonia. Dystonia is a neurological movement disorder characterized by sustained muscle contraction leading to abnormal posture, twisting, and repetitive movement. In Pisa Syndrome specifically there is commonly a tonic flexion of the trunk of the body to one side, leading to a slight lean (reminiscent of the Leaning Tower of Pisa, hence the name "Pisa syndrome"). This is usually associated with a backward axial rotation of the spine and indifferent to markedly abnormal posture. Patients diagnosed with Pisa Syndrome usually experience either acute dystonia or tardive dystonia, also known as tardive dyskinesia. Differential diagnosis between the two may be hard to accomplish without a complete patient history, since both types of dystonia may occur simultaneously in a patient. These symptoms generally disappear after discontinuation of the antipsychotic drug. The time of onset of symptoms may vary depending on drug being administered and the neurological characteristics of the patient in question.
Epileptic spasms, also known as infantile spasms, juvenile spasms, or West syndrome is an uncommon-to-rare epileptic disorder in infants, children and adults. It is named after the English physician, William James West (1793–1848), who first described it in an article published in The Lancet in 1841. The original case actually described his own son, James Edwin West (1840–1860). Other names for it are "generalized flexion epilepsy", "infantile epileptic encephalopathy", "infantile myoclonic encephalopathy", "jackknife convulsions", "massive myoclonia" and "Salaam spasms". The term "infantile spasms" can be used to describe the specific seizure manifestation in the syndrome, but is also used as a synonym for the syndrome itself. West syndrome in modern usage is the triad of infantile spasms, a pathognomonic EEG pattern (called hypsarrhythmia), and developmental regression – although the international definition requires only two out of these three elements.
The syndrome is age-related, generally occurring between the third and the twelfth month, generally manifesting around the fifth month. There are various causes. The syndrome is often caused by an organic brain dysfunction whose origins may be prenatal, perinatal (caused during birth) or postnatal.
The epileptic seizures which can be observed in infants with West syndrome fall into three categories, collectively known as infantile spasms. Typically, the following triad of attack types appears; while the three types usually appear simultaneously, they also can occur independently of each other:
- "Lightning attacks": Sudden, severe myoclonic convulsions of the entire body or several parts of the body in split seconds, and the legs in particular are bent (flexor muscle convulsions here are generally more severe than extensor ones).
- "Nodding attacks": Convulsions of the throat and neck flexor muscles, during which the chin is fitfully jerked towards the breast or the head is drawn inward.
- "Salaam or jackknife attacks": a flexor spasm with rapid bending of the head and torso forward and simultaneous raising and bending of the arms while partially drawing the hands together in front of the chest and/or flailing. If one imagined this act in slow motion, it would appear similar to the Muslim ceremonial greeting (Salaam), from which this type of attack derives its name.
The ‘Harlequin Sign’ is unilateral flushing and sweating of the face, neck, and upper chest usually after exposure to heat or strenuous exertion. Horner syndrome, another problem associated with the sympathetic nervous system, is often seen in conjunction with harlequin syndrome.
Since Harlequin syndrome is associated with a dysfunction in the autonomic nervous system, main symptoms of this dysfunction are in the following: Absence of sweat(anhidrosis) and flushing on one side of the face, neck, or upper thoracic area. In addition, other symptoms include cluster headaches, tearing of the eyes, nasal discharge, abnormal contraction of the pupils, weakness in neck muscles, and drooping of on side of the upper eyelid.
Harlequin syndrome is a condition characterized by asymmetric sweating and flushing on the upper thoracic region of the chest, neck, and face. Harlequin syndrome is considered an injury to the autonomic nervous system (ANS). The ANS controls some of the body's natural processes such as sweating, skin flushing, and pupil response to stimuli. Such individuals with this syndrome have an absence of sweat skin flushing unilaterally; usually on the one side of the face, arms, and chest. It is an autonomic disorder that may occur at any age. Harlequin syndrome affects fewer than 200,000 people in the United States.
Symptoms associated with Harlequin syndrome are more likely to appear when a person has been in the following conditions: exercising, warm environment, and intense emotional situation. Since one side of the body sweats and flushes appropriately to the condition, the other side of the body will have an absence of such symptoms. This syndrome has also been called the "Harlequin sign," and thought to be one of the spectrum of diseases that may cause Harlequin syndrome.
It can also be the outcome of a one sided endoscopic thoracic sympathectomy (ETS) or endoscopic sympathetic blockade (ESB) surgery.
Harlequin syndrome can also be seen as a complication of VA (veno-arterial) extracorporeal membrane oxygenation (ECMO). This involves differential hypoxemia (low oxygen levels in the blood) of the upper body in comparison to the lower body.
Aicardi syndrome is a rare genetic malformation syndrome characterized by the partial or complete absence of a key structure in the brain called the corpus callosum, the presence of retinal abnormalities, and seizures in the form of infantile spasms. Aicardi syndrome is theorized to be caused by a defect on the X chromosome as it has thus far only been observed in girls or in boys with Klinefelter syndrome. Confirmation of this theory awaits the discovery of a causative gene. Symptoms typically appear before a baby reaches about 5 months of age.
Children are most commonly identified with Aicardi syndrome before the age of five months. A significant number of girls are products of normal births and seem to be developing normally until around the age of three months, when they begin to have infantile spasms. The onset of infantile spasms at this age is due to closure of the final neural synapses in the brain, a stage of normal brain development. A number of tumors have been reported in association with Aicardi syndrome: choroid plexus papilloma (the most common), medulloblastoma, gastric hyperplastic polyps, rectal polyps, soft palate benign teratoma, hepatoblastoma, parapharyngeal embryonal cell cancer, limb angiosarcoma and scalp lipoma.
ABCD syndrome is the acronym for albinism, black lock, cell migration disorder of the neurocytes of the gut, and sensorineural deafness. It has been found to be caused by mutation in the endothelin B receptor gene (EDNRB).
A syndrome is a set of medical signs and symptoms occurring together, constitutes a particular disease or disorder. The word derives from the Greek σύνδρομον, meaning "concurrence". In some instances, a syndrome is so closely linked with a pathogenesis or cause that the words "syndrome", "disease", and "disorder" end up being used interchangeably for them. This is especially true of inherited syndromes. For example, Down syndrome, Wolf–Hirschhorn syndrome, and Andersen syndrome are disorders with known pathogeneses, so each is more than just a set of signs and symptoms, despite the "syndrome" nomenclature. In other instances, a syndrome is not specific to only one disease. For example, toxic shock syndrome can be caused by various toxins; premotor syndrome can be caused by various brain lesions; and premenstrual syndrome is not a disease but simply a set of symptoms.
If an underlying genetic cause is suspected but not known, a condition may be referred to as a genetic association (often just "association" in context). By definition, an association indicates that the collection of signs and symptoms occurs in combination more frequently than would be likely by chance alone.
Syndromes are often named after the physician or group of physicians that discovered them or initially described the full clinical picture. Such eponymous syndrome names are examples of medical eponyms. Recently, there has been a shift towards naming conditions descriptively (by symptoms or underlying cause) rather than eponymously, but the eponymous syndrome names often persist in common usage.
The following is a list of symptoms that have been associated with Roberts syndrome:
- Bilateral Symmetric Tetraphocomelia- a birth defect in which the hands and feet are attached to shortened arms and legs
- Prenatal Growth Retardation
- Hypomelia (Hypoplasia)- the incomplete development of a tissue or organ; less drastic than aplasia, which is no development at all
- Oligodactyly- fewer than normal number of fingers or toes
- Thumb Aplasia- the absence of a thumb
- Syndactyly- condition in which two or more fingers (or toes) are joined together; the joining can involve the bones or just the skin between the fingers
- Clinodactyly- curving of the fifth finger (little finger) towards the fourth finger (ring finger) due to the underdevelopment of the middle bone in the fifth finger
- Elbow/Knee Flexion Contractures- an inability to fully straighten the arm or leg
- Cleft Lip- the presence of one or two vertical fissures in the upper lip; can be on one side (unilateral) or on both sides (bilateral)
- Cleft Palate- opening in the roof of the mouth
- Premaxillary Protrusion- upper part of the mouth sticks out farther than the lower part of the mouth
- Micrognathia- small chin
- Microbrachycephaly- smaller than normal head size
- Malar Hypoplasia- underdevelopment of the cheek bones
- Downslanting Palpebral Fissures- the outer corners of the eyes point downwards
- Ocular Hypertelorism- unusually wide-set eyes
- Exophthalmos- a protruding eyeball
- Corneal Clouding- clouding of the front-most part of the eye
- Hypoplastic Nasal Alae- narrowing of the nostrils that can decrease the width of the nasal base
- Beaked Nose- a nose with a prominent bridge that gives it the appearance of being curved
- Ear Malformations
- Intellectual disability
- Encephalocele (only in severe cases)- rare defect of the neural tube characterized by sac-like protrusions of the brain
Mortality is high among those severely affected by Roberts syndrome; however, mildly affected individuals may survive to adulthood
In the beginning, medical officials defined ABCD syndrome by the four key characteristics of the syndrome. In the first case study of the Kurdish girl, researches described her as having "albinism and a black lock at the right temporo-occipital region along Blaschko lines, her eyelashes and brows were white, the irises in her eyes appeared to be blue, she had spots of retinal depigmentation, and she did not react to noise." The albinism is interesting in this diagnosis because the skin of an affected individual is albino pale besides the brown patches of mispigmented skin. The "black locks" described and seen in clinical pictures of the infants are thick patches of black hair above the ears that form a half circle reaching to the other ear to make a crest shape.
As identified in this first case study and stated in a dictionary of dermatologic syndromes, ABCD syndrome has many notable features, including "snow white hair in patches, distinct black locks of hair, skin white except brown macules, deafness, irises gray to blue, nystagmus, photophobia, poor visual activity, normal melanocytes in pigmented hair and skin, and absent melanocytes in areas of leukoderma." Individuals have the blue/gray irises typical of people affected by blindness. The C of ABCD syndrome is what distinguishes this genetic disorder from BADS and it involves cell migration disorder of the neurocytes of the gut. This characteristic occurs when nerve cells do not function correctly in the gut, which results in aganglionosis: The intestines’ failure to move food along the digestive tract. Deafness or being unresponsive to noise due to very low quality of hearing was reported in every case of ABCD syndrome. The characteristics of ABCD syndrome are clearly evident in an inflicted individual.
No longer considered a separate syndrome, ABCD syndrome is today considered to be a variation of Shah-Waardenburg type IV. Waardenburg syndrome (WS) is described as "the combination of sensorineural hearing loss, hypopigmentation of skin and hair, and pigmentary disturbances of the irides." Hearing loss and deafness, skin mispigmentation and albinism, and pigmentary changes in irises are the similarities between WS and ABCD. According to a dictionary of dermatologic syndromes, Waardenburg syndrome has many notable features, including "depigmentation of hair and skin – white forelock and premature graying of hair, confluent thick eyebrows, heterochromic irides or hypopigmentation of iris, laterally displaced inner canthi, congenital sensorineural deafness, broad nasal root, autosomal dominant disorder, and other associated findings, including black forelocks."
The earliest observable symptoms of Williams syndrome include low birth weight, failure to thrive, trouble breastfeeding, nocturnal irritability and gastroesophageal reflux. Facial dysmorphies thought to be characteristic of the syndrome are also present early in development, as is heart murmur. Research on the development of the syndrome suggest that congenital heart disease is typically present at an early age, often at the infant's first pediatric appointment. Heart problems in infancy often lead to the initial diagnosis of Williams syndrome.
Developmental delays are present in most cases of Williams syndrome, and include delay of language abilities and delayed motor skill development. Individuals with Williams syndrome develop language abilities quite late relative to other children, with the child's first word often occurring as late as three years of age. Language abilities are often observed to be deficient until adolescence, in terms of semantics, morphology, and phonology, though not in vocabulary.
Williams syndrome is also marked by a delay in development of motor skills. Infants with Williams develop the ability to lift their heads and sit without support months later than typically developing children. These delays continue into childhood, where patients with Williams syndrome are delayed in learning to walk. In young children, the observed motor delay is around five to six months, though some research suggests that children with Williams syndrome have a delay in development that becomes more extreme with age. Children with motor delays as a result of Williams syndrome are particularly behind in development of coordination, fine motor skills such as writing and drawing, response time, and strength and dexterity of the arms. Impaired motor ability persists (and possibly worsens) as children with Williams syndrome reach adolescence.
Adults and adolescents with Williams syndrome typically achieve a below-average height and weight, compared with non-affected populations. As individuals with Williams syndrome age, they frequently develop joint limitations and hypertonia, or abnormally increased muscle tone. Hypertension, gastrointestinal problems, and genitourinary symptoms often persist into adulthood, as well as cardiovascular problems. Adults with Williams syndrome are typically limited in their ability to live independently or work in competitive employment settings, but this developmental impairment is attributed more to psychological symptoms than physiological problems.
Psychiatric syndromes often called "psychopathological syndromes" (psychopathology is a psychic dysfunction occurring in mental disorder, also it's the study of the origin, diagnosis, development, and treatment of mental disorders).
In Russia those psychopathological syndromes are used in modern clinical practice and described in psychiatric literature in the details: asthenic syndrome, obsessive syndrome, emotional syndromes (for example, manic syndrome, depressive syndrome), Cotard's syndrome, catatonic syndrome, hebephrenic syndrome, delusional and hallucinatory syndromes (for example, paranoid syndrome, paranoid-hallucinatory syndrome, Kandinsky-Clérambault's syndrome also known as syndrome of psychic automatism, hallucinosis), paraphrenic syndrome, psychopathic syndromes (includes all personality disorders), clouding of consciousness syndromes (for example, twilight clouding of consciousness, amential syndrome also known as amentia, delirious syndrome, stunned consciousness syndrome, oneiroid syndrome), hysteric syndrome, neurotic syndrome, Korsakoff's syndrome, hypochondriacal syndrome, paranoiac syndrome, senestopathic syndrome, encephalopathic syndrome.
There are some examples of the psychopathological syndromes used in modern Germany: psychoorganic syndrome, depressive syndrome, paranoid-hallucinatory syndrome, obsessive-compulsive syndrome, autonomic syndrome, hostility syndrome, manic syndrome, apathy syndrome.
Also well known Münchausen syndrom, Ganser syndrome, neuroleptic-induced deficit syndrome, olfactory reference syndrome.
The most common symptoms of Williams syndrome are heart defects and unusual facial features. Other symptoms include failure to gain weight appropriately in infancy (failure to thrive) and low muscle tone. Individuals with Williams syndrome tend to have widely spaced teeth, a long philtrum, and a flattened nasal bridge.
Most individuals with Williams syndrome are highly verbal relative to their IQ, and are overly sociable, having what has been described as a "cocktail party" type personality. Individuals with WS hyperfocus on the eyes of others in social engagements.
The joint changes include hyperextensibility (double-jointedness) and arthritis. Babies and young children with Stickler syndrome usually have very hyperextensible joints. As an affected child gets older, they may experience pain and stiffness from overuse of a joint. Osteoarthritis of the large joints often develops during the third or fourth decade. The joint changes in Marshall syndrome are of the same type but to a lesser degree. There also may be changes in the bones that show up on X-ray but generally are not a problem.
Usher syndrome is responsible for the majority of deaf-blindness. The word "syndrome" means that multiple symptoms occur together, in this case, deafness and blindness. It occurs in roughly 1 person in 23,000 in the United States, 1 in 28,000 in Norway and 1 in 12,500 in Germany. People with Usher syndrome represent roughly one-sixth of people with retinitis pigmentosa.
Usher syndrome is inherited in an autosomal recessive pattern. "Recessive" means both parents must contribute an appropriate gene for the syndrome to appear, and "autosomal" means the gene is not carried on one of the sex chromosomes (X or Y), but rather on one of the 22 other pairs. (See the article on human genetics for more details.)
The progressive blindness of Usher syndrome results from retinitis pigmentosa. The photoreceptor cells usually start to degenerate from the outer to the center of the retina, including the macula. The degeneration is usually first noticed as night blindness (nyctalopia); peripheral vision is gradually lost, restricting the visual field (tunnel vision), which generally progresses to complete blindness. The qualifier 'pigmentosa' reflects the fact that clumps of pigment may be visible by an ophthalmoscope in advanced stages of degeneration.
Although Usher syndrome has been classified clinically in several ways, the prevailing approach is to classify it into three clinical sub-types called Usher I, II and III in order of decreasing severity of deafness. Usher I and II are the more common forms; the fraction of people with Usher III is significant only in a few specific areas, such as Finland and Birmingham. As described below, these clinical subtypes may be further subdivided by the particular gene mutated; people with Usher I and II may have any one of six and three genes mutated, respectively, whereas only one gene has been associated with Usher III. The function of these genes is still poorly understood. The hearing impairment associated with Usher syndrome is better understood: damaged hair cells in the cochlea of the inner ear inhibit electrical impulses from reaching the brain.
Males with 48, XXXY can have average or tall stature, which becomes more prominent in adulthood. Facial dysmorphism is common in males with 48, XXXY and can include increased distance between the eyes (hypertelorism), skin folds of the upper eyelid (epicanthal folds), up-slanting opening between the eyelids (palpebral fissures) and hooded eyelids. Other physical features include the fifth finger or "pinky" to be bent inwards towards the fourth finger (clinodactyly), short nail beds, flat feet, double jointedness (hyperextensibility) and prominent elbows with cubitus varus where the arm rests closer to the body. Musculoskeletal features may include congentical elbow dislocation and the limited ability of the feet to roll inwards while walking and upon landing. Micropenis is another common symptom of this syndrome.
Individuals affected with XXXY are also prone to developing Taurodontism, which often presents early in life, and can be an early indicator of XXY syndrome. Those with this syndrome are also prone to hip dysplasia, and other joint abnormalities. An individual’s symptoms vary due to differing androgen deficiencies, and also with alter with age. Prepubescent boys with XXXY syndrome may not differ in physical appearance from a child without the syndrome. This is likely because androgen levels do not differ among pre-pubescent boys, but a difference does arise as puberty progresses. Those with XXXY syndrome may also experience feminine distribution of adipose tissue, and gynecomastia may also be present. Tall stature is more likely to appear in adolescence, when androgen levels begin to differ between those with XXXY syndrome and those that do not have it.
Neurological effects are believed to be more severe as the number of extra X chromosomes increases; a male with 48, XXXY is likely to have more severe symptoms than a male with Klinefelter syndrome. Developmental delays are common in infancy and childhood. Expected symptoms include speech delays, motor delays, and hypotonia (lack of muscle tone), also known as floppy baby syndrome.Individuals with XXXY syndrome exhibit cognitive and behavioral problems.
Patients typically show altered adaptive behavior, which is the ability of an individual to demonstrate essential living skills, including: social skills, community living, safety, functional use of academic skills and self-care. People with XXXY syndrome were found to score significantly less in the domains of daily living skills and communication compared to XXYY, and XXY individuals. This means that they typically demonstrate little ability in the domains of self-care, social skills, safety, application of academic skills, and responsibility.
Individuals with this syndrome also experience emotional symptoms such as anxiety symptoms, obsessive-compulsive behaviors, behavioral dysregulational and emotional immaturity. People with this syndrome typically have an IQ in the range of 40-60, where the average IQ range is 95-110. They also experience language-based learning disabilities that can affect their communication with others. Those with XXXY syndrome tend to display less externalizing and internalizing behaviors compared to those with 48, XXYY syndrome, which may have a positive effect on their social functioning. These individuals may also have increased vulnerability for autistic features. Changes in testosterone as well as androgen deficits may contribute to these individuals’ social behaviors that put them at increased risk for autistic features.
Usher syndrome, also known as Hallgren syndrome, Usher-Hallgren syndrome, retinitis pigmentosa-dysacusis syndrome, or dystrophia retinae dysacusis syndrome, is an extremely rare genetic disorder caused by a mutation in any one of at least 11 genes resulting in a combination of hearing loss and visual impairment. It is a leading cause of deafblindness and is at present incurable.
Usher syndrome is classed into three subtypes according to onset and severity of symptoms. All three subtypes are caused by mutations in genes involved in the function of the inner ear and retina. These mutations are inherited in an autosomal recessive pattern.
The key affected features of this condition are described in its name.
Scalp: There are raised nodules over the posterior aspect of the scalp, covered by scarred non-hair bearing skin.
Ears: The shape of the pinnae is abnormal, with the superior edge of the pinna being turned over more than usual. The size of the tragus, antitragus and lobule may be small.
Nipples: The nipples are absent or rudimentary. The breasts may be small or virtually absent.
Other features of the condition include:
Dental abnormalities: missing or widely spaced teeth
Syndactyly: toes or fingers may be partially joined proximally
Renal abnormalities: renal hypoplasia, pyeloureteral duplication
Eye abnormalities: Cataract, coloboma of the iris and asymmetric pupils.
Individuals with Stickler syndrome experience a range of signs and symptoms. Some people have no signs and symptoms; others have some or all of the features described below. In addition, each feature of this syndrome may vary from subtle to severe.
A characteristic feature of Stickler syndrome is a somewhat flattened facial appearance. This is caused by underdeveloped bones in the middle of the face, including the cheekbones and the bridge of the nose. A particular group of physical features, called the Pierre Robin sequence, is common in children with Stickler syndrome. Robin sequence includes a U-shaped or sometimes V-shaped cleft palate (an opening in the roof of the mouth) with a tongue that is too large for the space formed by the small lower jaw. Children with a cleft palate are also prone to ear infections and occasionally swallowing difficulties.
Many people with Stickler syndrome are very nearsighted (described as having high myopia) because of the shape of the eye. People with eye involvement are prone to increased pressure within the eye (ocular hypertension) which could lead to glaucoma and tearing or detachment of the light-sensitive retina of the eye (retinal detachment). Cataract may also present as an ocular complication associated with Stickler's Syndrome. The jelly-like substance within the eye (the vitreous humour) has a distinctive appearance in the types of Stickler syndrome associated with the COL2A1 and COL11A1 genes. As a result, regular appointments to a specialist ophthalmologist are advised. The type of Stickler syndrome associated with the COL11A2 gene does not affect the eye.
People with this syndrome have problems that affect things other than the eyes and ears. Arthritis, abnormality to ends of long bones, vertebrae abnormality, curvature of the spine, scoliosis, joint pain, and double jointedness are all problems that can occur in the bones and joints. Physical characteristics of people with Stickler can include flat cheeks, flat nasal bridge, small upper jaw, pronounced upper lip groove, small lower jaw, and palate abnormalities, these tend to lessen with age and normal growth and palate abnormalities can be treated with routine surgery.
Another sign of Stickler syndrome is mild to severe hearing loss that, for some people, may be progressive (see hearing loss with craniofacial syndromes). The joints of affected children and young adults may be very flexible (hypermobile). Arthritis often appears at an early age and worsens as a person gets older. Learning difficulties, not intelligence, can also occur because of hearing and sight impairments if the school is not informed and the student is not assisted within the learning environment.
Stickler syndrome is thought to be associated with an increased incidence of mitral valve prolapse of the heart, although no definitive research supports this.
Many people with this disorder have a premature fusion of skull bones along the coronal suture. Not every case has had craniosynostosis however. Other parts of the skull may be malformed as well. This will usually cause an abnormally shaped head, wide-set eyes, low set ears and flattened cheekbones in these patients. About 5 percent of affected individuals have an enlarged head (macrocephaly). There may also be associated hearing loss in 10-33% of cases and it is important for affected individuals to have hearing tests to check on the possibility of a problem. They can lose about 33-100% of hearing.
Most people with this condition have normal intellect, but developmental delay and learning disabilities are possible. The signs and symptoms of Muenke syndrome vary among affected people, and some findings overlap with those seen in other craniosynostosis syndromes. Between 6 percent and 7 percent of people with the gene mutation associated with Muenke syndrome do not have any of the characteristic features of the disorder.