Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Juvenile myoclonic epilepsy (JME) is an idiopathic generalized epilepsy that occurs in patients aged 8 to 20 years. Patients have normal cognition and are otherwise neurologically intact. The most common seizure is myoclonic jerks, although generalized tonic-clonic seizures and absence seizures may occur as well. Myoclonic jerks usually cluster in the early morning after awakening. The EEG reveals generalized 4–6 Hz spike wave discharges or multiple spike discharges. These patients are often first diagnosed when they have their first generalized tonic-clonic seizure later in life, when they experience sleep deprivation (e.g., freshman year in college after staying up late to study for exams). Alcohol withdrawal can also be a major contributing factor in breakthrough seizures, as well. The risk of the tendency to have seizures is lifelong; however, the majority have well-controlled seizures with anticonvulsant medication and avoidance of seizure precipitants.
Frontal lobe epilepsy, usually a symptomatic or cryptogenic localization-related epilepsy, arises from lesions causing seizures that occur in the frontal lobes of the brain. These epilepsies can be difficult to diagnose because the symptoms of seizures can easily be confused with nonepileptic spells and, because of limitations of the EEG, be difficult to "see" with standard scalp EEG.
Juvenile absence epilepsy is an idiopathic generalized epilepsy with later onset than CAE, typically in prepubertal adolescence, with the most frequent seizure type being absence seizures. Generalized tonic-clonic seizures can occur. Often, 3 Hz spike-wave or multiple spike discharges can be seen on EEG. The prognosis is mixed, with some patients going on to a syndrome that is poorly distinguishable from JME.
There are six main types of generalized seizures: tonic-clonic, tonic, clonic, myoclonic, absence, and atonic seizures. They all involve a loss of consciousness and typically happen without warning.
- Tonic-clonic seizures present with a contraction of the limbs followed by their extension, along with arching of the back for 10–30 seconds. A cry may be heard due to contraction of the chest muscles. The limbs then begin to shake in unison. After the shaking has stopped it may take 10–30 minutes for the person to return to normal.
- Tonic seizures produce constant contractions of the muscles. The person may turn blue if breathing is impaired.
- Clonic seizures involve shaking of the limbs in unison.
- Myoclonic seizures involve spasms of muscles in either a few areas or generalized through the body.
- Absence seizures can be subtle, with only a slight turn of the head or eye blinking. The person often does not fall over and may return to normal right after the seizure ends, though there may also be a period of post-ictal disorientation.
- Atonic seizures involve the loss of muscle activity for greater than one second. This typically occurs bilaterally (on both sides of the body).
A seizure can last from a few seconds to more than five minutes, at which point it is known as status epilepticus. Most tonic-clonic seizures last less than two or three minutes. Absence seizures are usually around 10 seconds in duration.
The clinical manifestations of absence seizures vary significantly among patients. Impairment of consciousness is the essential symptom, and may be the only clinical symptom, but this can be combined with other manifestations. The hallmark of the absence seizures is abrupt and sudden-onset impairment of consciousness, interruption of ongoing activities, a blank stare, possibly a brief upward rotation of the eyes. If the patient is speaking, speech is slowed or interrupted; if walking, they stand transfixed; if eating, the food will stop on its way to the mouth. Usually, the patient will be unresponsive when addressed. In some cases, attacks are aborted when the patient is called. The attack lasts from a few seconds to half a minute, and evaporates as rapidly as it commenced. Absence seizures generally are not followed by a period of disorientation or lethargy (post-ictal state), in contrast to the majority of seizure disorders.
1. Absence with impairment of consciousness only as per the above description.
2. Absence with mild clonic components. Here the onset of the attack is indistinguishable from the above, but clonic components may occur in the eyelids, at the corner of the mouth, or in other muscle groups which may vary in severity from almost imperceptible movements to generalised myoclonic jerks. Objects held in the hand may be dropped.
3. Absence with atonic components. Here there may be a diminution in tone of muscles subserving posture as well as in the limbs leading to dropping of the head, occasionally slumping of the trunk, dropping of the arms, and relaxation of the grip. Rarely tone is sufficiently diminished to cause this person to fall.
4. Absence with tonic components. Here during the attack tonic muscular contraction may occur, leading to increase in muscle tone which may affect the extensor muscles or the flexor muscles symmetrically or asymmetrically. If the patient is standing, the head may be drawn backward and the trunk may arch. This may lead to retropulsion, which may cause eyelids to twitch rapidly, eyes may jerk upwards or the patients head may rock back and forth slowly, as if nodding. The head may tonically draw to one or another side.
5. Absence with automatisms. Purposeful or quasipurposeful movements occurring in the absence of awareness during an absence attack are frequent and may range from lip licking and swallowing to clothes fumbling or aimless walking. If spoken to, the patient may grunt, and when touched or tickled may rub the site. Automatisms are quite elaborate and may consist of combinations of the above described movements or may be so simple as to be missed by casual observation.
6. Absence with autonomic components. These may be pallor, and less frequently flushing, sweating, dilatation of pupils and incontinence of urine.
Mixed forms of absence frequently occur.
These seizures can happen a few times a day or in some cases hundreds of times a day, to the point that the person cannot concentrate in school or in other situations requiring sustained, concentrated attention.
Benign neonatal seizures include two disorders benign idiopathic neonatal seizures and benign familial neonatal seizures. They are not classified as epilepsy. Anticonvulsants are not needed. And those affected do not develop epilepsy when they grow up.
Generalized seizures can be either absence seizures, myoclonic seizures, clonic seizures, tonic-clonic seizures or atonic seizures.
Generalized seizures occur in various seizure syndromes, including myoclonic epilepsy, familial neonatal convulsions, childhood absence epilepsy, absence epilepsy, infantile spasms (West's syndrome), Juvenile Myoclonic Epilepsy and Lennox-Gastaut syndrome.
The cardinal features of Rolandic epilepsy are infrequent, often single, focal seizures consisting of:
Hemifacial sensorimotor seizures are often entirely localised in the lower lip or spread to the ipsilateral hand. Motor manifestations are sudden, continuous or bursts of clonic contractions, usually lasting from a few seconds to a minute. Ipsilateral tonic deviation of the mouth is also common. Hemifacial sensory symptoms consist of unilateral numbness mainly in the corner of the mouth.
Hemifacial seizures are often associated with an inability to speak and hypersalivation:
"The left side of my mouth felt numb and started jerking and pulling to the left, and I could not speak to say what was happening to me."
Negative myoclonus can be observed in some cases, as an interruption of tonic muscular activity
Oropharyngolaryngeal ictal manifestations are unilateral sensorimotor symptoms inside the mouth. Numbness, and more commonly paraesthesias (tingling, prickling, freezing), are usually diffuse on one side or, exceptionally, may be highly localised even to one tooth. Motor oropharyngolaryngeal symptoms produce strange sounds, such as death rattle, gargling, grunting and guttural sounds, and combinations:
"In his sleep, he was making guttural noises, with his mouth pulled to the right, ‘as if he was chewing his tongue’". "We heard her making strange noises ‘like roaring’ and found her unresponsive, head raised from the pillow, eyes wide open, rivers of saliva coming out of her mouth, rigid."
Arrest of speech is a form of anarthria. The child is unable to utter a single intelligible word and attempts to communicate with gestures.
"My mouth opened and I could not speak. I wanted to say I cannot speak. At the same time, it was as if somebody was strangling me."
Hypersalivation , a prominent autonomic manifestation, is often associated with hemifacial seizures, oro-pharyngo-laryngeal symptoms and speech arrest. Hypersalivation is not just frothing:
"Suddenly my mouth is full of saliva, it runs out like a river and I cannot speak."
Syncope-like epileptic seizures may occur, probably as a concurrent symptom of Panayiotopoulos syndrome:
"She lies there, unconscious with no movements, no convulsions, like a wax work, no life."
Consciousness and recollection are fully retained in more than half (58%) of Rolandic seizures.
"I felt that air was forced into my mouth, I could not speak and I could not close my mouth. I could understand well everything said to me. Other times I feel that there is food in my mouth and there is also a lot of salivation. I cannot speak."
In the remainder (42%), consciousness becomes impaired during the ictal progress and in one third there is no recollection of ictal events.
Progression to hemiconvulsions or generalised tonic–clonic seizures occurs in around half of children and hemiconvulsions may be followed by postictal Todd’s hemiparesis .
Duration and circadian distribution: Rolandic seizures are usually brief, lasting for 1–3 min. Three quarters of seizures occur during nonrapid eye movement sleep, mainly at sleep onset or just before awakening.
Status epilepticus: Although rare, focal motor status or hemiconvulsive status epilepticus is more likely to occur than secondarily generalised convulsive status epilepticus, which is exceptional. Opercular status epilepticus usually occurs in children with atypical evolution or may be induced by carbamazepine or lamotrigine. This state lasts for hours to months and consists of ongoing unilateral or bilateral contractions of the mouth, tongue or eyelids, positive or negative subtle perioral or other myoclonus, dysarthria, speech arrest, difficulties in swallowing, buccofacial apraxia and hypersalivation. These are often associated with continuous spikes and waves on an EEG during NREM sleep.
Other seizure types: Despite prominent hypersalivation, focal seizures with primarily autonomic manifestations (autonomic seizures) are not considered part of the core clinical syndrome of Rolandic epilepsy. However, some children may present with independent autonomic seizures or seizures with mixed Rolandic-autonomic manifestations including emesis as in Panayiotopoulos syndrome.
Atypical forms: Rolandic epilepsy may present with atypical manifestations such early age at onset, developmental delay or learning difficulties at inclusion, other seizure types, atypical EEG abnormalities.
These children usually have normal intelligence and development. Learning can remain unimpaired while a child is afflicted with Rolandic epilepsy.
Generalized epilepsy, also known as primary generalized epilepsy or idiopathic epilepsy, is a form of epilepsy characterised by generalised seizures with no apparent cause. Generalized seizures, as opposed to focal seizures, are a type of seizure that impairs consciousness and distorts the electrical activity of the whole or a larger portion of the brain (which can be seen, for example, on electroencephalography, EEG).
Generalized epilepsy is "primary" because the epilepsy is the originally diagnosed condition itself, as opposed to "secondary" epilepsy, which occurs as a symptom of a diagnosed condition.
These syndromes are childhood absence epilepsy, epilepsy with myoclonic absences, juvenile absence epilepsy and juvenile myoclonic epilepsy. Other proposed syndromes are Jeavons syndrome (eyelid myoclonia with absences), and genetic generalised epilepsy with phantom absences.
These types of seizures are also known to occur to patients suffering with porphyria and can be triggered by stress or other porphyrin-inducing factors.
Seizures are purely occipital and primarily manifest with elementary visual hallucinations, blindness or both.
They are usually frequent and diurnal, develop rapidly within seconds and are brief, lasting from a few seconds to 1–3 min, and, rarely, longer.
Elementary visual hallucinations are the most common and characteristic ictal symptoms, and are most likely to be the first and often the only clinical manifestation. They consist mainly of small multicoloured circular patterns that often appear in the periphery of a visual field, becoming larger and multiplying during the course of the seizure, frequently moving horizontally towards the other side.
Other occipital symptoms, such as sensory illusions of ocular movements and ocular pain, tonic deviation of the eyes, eyelid fluttering or repetitive eye closures, may occur at the onset of the seizures or appear after the elementary visual hallucinations. "Deviation of the eyes", often associated with ipsilateral turning of the head, is the most common (in about 70% of cases) nonvisual ictal symptom. It is often associated with ipsilateral turning of the head and usually starts after visual hallucinations, although it may also occur while the hallucinations still persist. It may be mild, but more often it is severe and progresses to hemiconvulsions and secondarily generalised tonic clonic seizures (GTCS). Some children may have seizures of eye deviation from the start without visual hallucinations.
"Forced eyelid closure and eyelid blinking" occur in about 10% of patients, usually at a stage at which consciousness is impaired. They signal an impending secondarily GTCS.
"Ictal blindness", appearing from the start or, less commonly, after other manifestations of occipital seizures, usually lasts for 3–5 min. It can occur alone and be the only ictal event in patients who could, at other times, have visual hallucinations without blindness.
Complex visual hallucinations, visual illusions and other symptoms resulting from more anterior ictal spreading rarely occur from the start. They may terminate in hemiconvulsions or generalised convulsions.
Ictal headache, or mainly orbital pain, may occur and often precedes visual or other ictal occipital symptoms in a small number of patients.
Consciousness is not impaired during the visual symptoms (simple focal seizures), but may be disturbed or lost in the course of the seizure, usually before eye deviation or convulsions.
Occipital seizures of ICOE-G may rarely progress to extra-occipital manifestations, such as hemiparaesthesia. Spread to produce symptoms of temporal lobe involvement is exceptional and may indicate a symptomatic cause.
Post-ictal headache, mainly diffuse, but also severe, unilateral and pulsating, or indistinguishable from migraine headache, occurs in half the patients, in 10% of whom it may be associated with nausea and vomiting.
Circadian distribution: Visual seizures are predominantly diurnal and can occur at any time of the day. Longer seizures, with or without hemi or generalised convulsions, tend to occur either during sleep, causing the patient to wake up, or after awakening. Thus, some children may have numerous diurnal visual seizures and only a few seizures that are exclusively nocturnal or occur on awakening.
Frequency of seizures: If untreated, patients experience frequent and brief visual seizures (often several every day or weekly). However, propagation to other seizure manifestations, such as focal or generalised convulsions, is much less frequent.
Benign familial infantile epilepsy (BFIE), also known as benign familial infantile seizures (BFIS) or benign familial infantile convulsions (BFIC) is an epilepsy syndrome. Affected children, who have no other health or developmental problems, develop seizures during infancy. These seizures have focal origin within the brain but may then spread to become generalised seizures. The seizures may occur several times a day, often grouped in clusters over one to three days followed by a gap of one to three months. Treatment with anticonvulsant drugs is not necessary but they are often prescribed and are effective at controlling the seizures. This form of epilepsy resolves after one or two years, and appears to be completely benign. The EEG of these children, between seizures, is normal. The brain appears normal on MRI scan.
A family history of epilepsy in infancy distinguishes this syndrome from the non-familial classification (see benign infantile epilepsy), though the latter may be simply sporadic cases of the same genetic mutations. The condition is inherited with an autosomal dominant transmission. There are several genes responsible for this syndrome, on chromosomes 2, 16 and 19. It is generally described as idiopathic, meaning that no other neurological condition is associated with it or causes it. However, there are some forms that are linked to neurological conditions. One variant known as infantile convulsions and choreoathetosis (ICCA) forms an association between BFIE and paroxysmal kinesigenic choreoathetosis and has been linked to the PRRT2 gene on chromosome 16. An association with some forms of familial hemiplegic migraine (FHM) has also been found. Benign familial infantile epilepsy is not genetically related to benign familial neonatal epilepsy (BFNE), which occurs in neonates. However, a variation with seizure onset between two days and seven months called "benign familial neonatal–infantile seizures" (BFNIS) has been described, which is due to a mutation in the SCN2A gene.
A gelastic seizure is typically caused by a hypothalamic hamartoma, or a brain tumor. A hypothalamic hamartoma is defined as a benign mass of glial tissue on or near the hypothalamus. The size of the hamartoma can vary from one centimeter to larger than three centimeters. They can cause several different types of seizures including a Gelastic Seizure. These structures can be detected with different imaging modalities such as computed tomography and magnetic resonance imaging. A computed tomography scan of an individual with a hypothalamic hamartoma would reveal an suprasellar mass with the same density as brain tissue. Images of these masses are not enhanced with the use of contrast. However, although a computed tomography scan may be useful in diagnosing the cause of a seizure, in the case of a hypothalamic hamartoma, magnetic resonance imaging is the tool of choice due to the cerebrospinal fluid which defines these masses. Photon emission computed tomography may also be used. This involves the use of a radiotracer which is taken up by the ictal region of the brain which is typically where the tumor lies. Gelastic seizures have been observed after taking a birth control pill (Maxim (R)).
Optic nerve hypoplasia is the only reported condition with gelastic seizures without hypothalamic hamartomas, suggesting that hypothalamic disorganization alone can cause gelastic seizures.
The age of onset of seizures is typically between three and five, though onset can occur at an earlier or later age. The syndrome shows clear parallels to West syndrome, enough to suggest a connection.
Daily multiple seizures are typical in LGS. Also typical is the broad range of seizures that can occur, larger than that of any other epileptic syndrome. The most frequently occurring seizure type is tonic seizures, which are often nocturnal (90%); the second most frequent are myoclonic seizures, which often occur when the person is over-tired.
Atonic, atypical absence, tonic, complex partial, focalized and tonic–clonic seizures are also common. Additionally, about half of patients will have status epilepticus, usually the nonconvulsive type, which is characterized by dizziness, apathy, and unresponsiveness. The seizures can cause sudden falling (or spasms in tonic, atonic and myoclonic episodes) and/or loss of balance, which is why patients often wear a helmet to prevent head injury.
In addition to daily multiple seizures of various types, children with LGS frequently have arrested/slowed psycho-motor development and behavior disorders.
The syndrome is also characterized by an (between-seizures) EEG featuring slow spike-wave complexes.
The main sign of a gelastic seizure is a sudden outburst of laughter or crying with no apparent cause. The laughter may sound unpleasant and sardonic rather than joyful. The outburst usually lasts for less than a minute. During or shortly after a seizure, an individual might display some twitching, strange eye movements, lip smacking, fidgeting or mumbling. If a person who suffers from the seizures is hooked up to an electroencephalogram it will reveal interictal epileptic discharges. This syndrome usually manifests itself before the individual reaches the age of three or four. The temporal lobes, and the hypothalamus are the areas of the brain with the most involvement with these seizures. This may cause learning disabilities, and faulted cognitive function as well. It is not uncommon for children to have tonic-clonic seizures, and atonic seizures directly following the seizure. Those that are associated with hypothalamic hamartomas may occur as often as several times hourly and typically begin during infancy. Seizures that occur in infancy may include bursts of cooing, respirations, giggling, and smiling. Due to early hypothalamic-pituitary-gonadal axis activation in girls who suffer from the seizures, it is not uncommon for them to display secondary sex characteristics before the age of eight.
Focal aware seizures are seizures which affect only a small region of the brain, often the temporal lobes or structures found there such as the hippocampi. People who have focal aware seizures remain conscious. Focal aware seizures often precede larger focal impaired awareness seizures, where the abnormal electrical activity spreads to a larger area of the brain. This can result in a tonic-clonic seizure.
- Presentation
Focal onset aware seizures are a very subjective experience, and the symptoms vary greatly between people. This is due to the varying locations of the brain the seizures originate in e.g.: Rolandic. A focal aware seizure may go unnoticed by others or shrugged off by the sufferer as merely a "funny turn." Focal aware seizures usually start suddenly and are very brief, typically lasting 60 to 120 seconds.
Some common symptoms of a focal onset aware seizure, when the person is awake, are:
- preserved consciousness
- sudden and inexplicable feelings of fear, anger, sadness, happiness or nausea
- sensations of falling or movement
- experiencing of unusual feelings or sensations
- altered sense of hearing, smelling, tasting, seeing, and tactile perception (sensory illusions or hallucinations), or feeling as though the environment is not real (derealization) or dissociation from the environment or self (depersonalization)
- a sense of spatial distortion—things close by may appear to be at a distance
- déjà vu (familiarity) or jamais vu (unfamiliarity)
- laboured speech or inability to speak at all
- usually the event is remembered in detail
When the seizure occurs during sleep, the person will often become semi-conscious and act out a dream they were having while engaging with the real environment as normal. Objects and people usually appear normal or only slightly distorted to them, and will be able to communicate with them on an otherwise normal level.
However, since the person is still acting in the dream-like state from which they woke, they will assimilate any hallucinations or delusions into their communication, often speaking to a hallucinatory person or speaking of events or thoughts normally pertaining to the dream they were having or other hallucination.
While asleep symptoms include:
- onset usually in REM sleep
- dream like state
- appearance of full consciousness
- hallucinations or delusions
- behavior or visions typical in dreams
- ability to engage with the environment and other people as in full consciousness, though often behaving abnormally, erratically, or failing to be coherent
- complete amnesia or assimilating the memory as though it was a normal dream on regaining full consciousness
Although hallucinations may occur during focal aware seizures they are differentiated from psychotic symptoms by the fact that the person is usually aware that the hallucinations are not real.
- Jacksonian march
Jacksonian march or Jacksonian seizure is a phenomenon where a focal aware seizure spreads from the distal part of the limb toward the face (on same side of body). They involve a progression of the location of the seizure in the brain, which leads to a "march" of the motor presentation of symptoms.
Jacksonian seizures are initiated with abnormal electrical activity within the primary motor cortex. They are unique in that they travel through the primary motor cortex in succession, affecting the corresponding muscles, often beginning with the fingers. This is felt as a tingling sensation, or a feeling of waves through the fingers when touched together. It then affects the hand and moves on to more proximal areas on the same side of body. Symptoms often associated with a Jacksonian seizure are sudden head and eye movements, tingling, numbness, smacking of the lips, and sudden muscle contractions. Most of the time any one of these actions can be seen as normal movements, without being associated with the seizure occurring. They occur at no particular moment and last only briefly. They may result in secondary generalized seizure involving both hemispheres. They can also start at the feet, manifesting as tingling or pins and needles, and there are painful cramps in the foot muscles, due to the signals from the brain. Because it is a partial seizure, the postictal state is of normal consciousness .
Ohtahara syndrome is rare and the earliest-appearing age-related epileptic encephalopathy, with seizure onset occurring within the first three months of life, and often in the first ten days. Many, but not all, cases of OS evolve into other seizure disorders, namely West syndrome and Lennox-Gastaut syndrome.
The primary outward manifestation of OS is seizures, usually presenting as tonic seizures (a generalized seizure involving a sudden stiffening of the limbs). Other seizure types that may occur include partial seizures, clusters of infantile spasms, and, rarely, myoclonic seizures. In addition to seizures, children with OS exhibit profound mental and physical retardation.
Clinically, OS is characterized by a "burst suppression" pattern on an EEG. This pattern involves high voltage spike wave discharge followed by little brain wave activity.
It is named for the Japanese neurologist Shunsuke Ohtahara (1930–2013), who identified it in 1976.
A focal impaired awareness seizure is a seizure that is associated with unilateral cerebral hemisphere involvement and causes impairment of awareness or responsiveness, i.e. alteration of consciousness.
- Presentation
Focal impaired awareness seizures are often preceded by an aura. The seizure aura is a focal aware seizure. The aura may manifest itself as a feeling of déjà vu, jamais vu, fear, euphoria or depersonalization. The aura might also occur as a visual disturbance, such as tunnel vision or a change in the perceived size of objects. Once consciousness is impaired, the person may display automatisms such as lip smacking, chewing or swallowing. There may also be loss of memory (amnesia) surrounding the seizural event. The person may still be able to perform routine tasks such as walking, although such movements are not purposeful or planned. Witnesses may not recognize that anything is wrong.
Focal impaired awareness seizures might arise from any lobe of the brain. They most commonly arise from the temporal lobe, particularly the amygdala, hippocampus, and neocortical regions. A common associated brain abnormality is mesial temporal sclerosis. Mesial temporal sclerosis is a specific pattern of hippocampal neuronal loss accompanied by hippocampal gliosis and atrophy. Focal onset impaired awareness seizures occur when excessive and synchronous electrical brain activity causes the impaired awareness and responsiveness. The abnormal electrical activity might spread to the rest of the brain and cause a "focal to bilateral seizure" or a generalized tonic–clonic seizure. The newer classification of 2017 groups only focal and generalized seizures, and generalised seizures are those that involve both sides of the brain from the onset.
Epileptic symptoms are frequently the product of the spread of overactivation occurring within one central foci that travels to lateral brain regions thereby causing an array of symptoms. Due to the massive amount of diversity in both the cognitive and motor functions that occur within the frontal lobes, there is an immense variety in the types of symptoms that can arise from epileptic seizures based on the side and topography of the focal origin. In general these symptoms can range anywhere from asymmetric and abnormal body positioning to repetitive vocal outbursts and repetitive jerking movements. The symptoms typically come in short bursts that last less than a minute and often occur while a patient is sleeping. In most cases, a patient will experience a physical or emotional Aura of tingling, numbness or tension prior to a seizure occurring. Fear is associated with temporal and frontal lobe epilepsies, but in FLE the fear is predominantly expressed on the person's face whereas in TLE the fear is subjective and internal, not perceptible to the observer.
Tonic posture and clonic movements are common symptoms among most of the areas of the frontal lobe, therefore the type of seizures associated with frontal lobe epilepsy are commonly called tonic-clonic seizures. Dystonic motor movements are common to both TLE and FLE, but are usually the first symptom in FLE episodes where they are quite brief and do not affect consciousness. The seizures are complex partial, simple partial, secondarily generalized or a combination of the three. These partial seizures are often misdiagnosed as psychogenic seizures. A wide range of more specific symptoms arise when different parts of the frontal cortex are affected.
- Supplementary motor area (SMA)
- The onset and relief of the seizure are quite abrupt.
- The tonic posturing in this area is unilateral or asymmetric between the left and right hemispheres. A somatosensory aura frequently precedes many large motor and vocal symptoms and most often the afflicted person is responsive.
- "Motor symptoms": Facial grimacing and complex automatisms like kicking and pelvic thrusting
- "Vocal symptoms": Laughing, yelling, or speech arrest.
- Primary motor cortex
- The primary motor cortex has jacksonian seizures that spread to adjacent areas of the lobe which often trigger a second round of seizures originating in another cortical area. The seizures are much simpler than those that originate in the SMA and are usually clonic or myoclonic movements with speech arrest. Some dystonic or contralateral adversive posturing may also be present.
- Medial frontal, cingulate gyrus, orbitofrontal, or frontopolar regions
- Motor symptoms of seizures in this area are accompanied by emotional feelings and viscerosensory symptoms. Motor and vocal agitation are similar to that of the SMA with short repetitive thrashing, pedaling, thrusting, laughing, screaming and/or crying.
- This is some of what can cause the misdiagnosis of a psychological disorder.
- Dorsolateral cortex
- This area does not seem to have many motor symptoms beyond tonic posturing or clonic movements. Contralateral or less commonly ipsilateral head turn and eye deviation are commonly associated with this area as well.
- Operculum
- Many of the symptoms associated with this area involve the head and digestive tract: swallowing, salivation, mastication and possibly gustatory hallucinations. Preceding the seizure the person is fearful and often has an epigastric aura. There is not much physical movement except clonic facial movements. Speech is often arrested.
There may be an increased family history of epilepsies (37% of cases) or migraine (16% of cases) but a family history of similar seizures is exceptional.
The condition may be difficult to diagnose. The subject may be unaware they have a seizure disorder. To others, the involuntary movements made during sleep may appear no different from those typical of normal sleep.People who have nocturnal seizures may notice unusual conditions upon awakening in the morning, such as a headache, having wet the bed, having bitten the tongue, a bone or joint injury, muscle strains or weakness, fatigue, or lightheadedness. Others may notice unusual mental behaviors consistent with the aftermath of a seizure. Objects near the bed may have been knocked to the floor, or the subject may be surprised to find themselves on the floor.
There are many risks associated with nocturnal seizures including concussion, suffocation and sudden unexpected death (SUDEP).
Early myoclonic encephalopathy (EME) is an epilepsy syndrome where myoclonic seizures develop in the neonatal period. After several months, the seizure pattern may develop to infantile spasms (West syndrome). Various genetic and metabolic disorders are responsible. The seizures are resistant to treatment. The neurology is very abnormal and patients often do not live beyond one year.
The only sign of BFNE are seizures, generally tonic-clonic, which occur within the first week of life. Seizures often begin as apnea, cyanosis, and hypertonia and last less than 1 minute.
People with BFNE are not more likely to develop epileptic seizures later in life.
Episodes that include complex hyperactivity of the proximal portions of the limbs that lead to increased overall motor activity are called hypermotor seizures. When associated with bizarre movements and vocalizations these seizures are often misdiagnosed as pseudoseizures or other episodic movement disorders such as psychogenic movement disorders, familial paroxysmal dystonic choreoathetosis, paroxysmal kinesogenic choreoathetosis, or episodic ataxia type 1. Hypermotor seizure in children are often confused with pavor nocturnus (night terrors). Paroxysmal nocturnal dystonia or hypnogenic paroxysmal dystonia are other names given to describe FLE symptoms but are simply just FLE.
Autosomal Dominant Nocturnal Frontal Lobe Epilepsy (ADNFLE) is the best understood form of frontal lobe epilepsy but is often misdiagnosed as sleep apnea. Both disorders are characterized by awakening during the night which leads to daytime sleepiness. Some symptoms of sleep apnea overlap with those of ADNFLE, such as sudden awakening accompanied by a feeling of choking and on occasion motor activity which makes diagnosis difficult based on symptoms alone. Video surveillance as well as EEG is occasionally needed to differentiate between the two disorders. It has been reported that sleep apnea might be associated with epilepsy which would account for some of the misdiagnoses.
Panayiotopoulos syndrome occurs exclusively in otherwise normal children and manifests mainly with infrequent autonomic epileptic seizures and autonomic status epilepticus. Onset of seizures is from age 1 to 14 years with 76% starting between 3–6 years. Autonomic seizures consist of episodes of disturbed autonomic function with nausea, retching and vomiting as predominant symptoms. Other autonomic manifestations include pallor (or, less often, flushing or cyanosis), mydriasis (or, less often, miosis), cardiorespiratory and thermoregulatory alterations, incontinence of urine and/or feces, hypersalivation, and modifications of intestinal motility. In approximately one fifth of the seizures the child becomes unresponsive and flaccid (syncope-like epileptic seizures or ictal syncope) before or often without convulsions. Syncope-like epileptic seizures (ictal syncope) with the child becoming "completely unresponsive and flaccid like a rag doll" occur in one fifth of the seizures. More-conventional seizure symptoms often appear after the onset of autonomic manifestations. The child, who was initially fully conscious, becomes confused and unresponsive. Eyes turn to one side or gaze widely open. Only half of the seizures end with brief hemiconvulsions or generalized convulsions. Autonomic symptoms may be the only features of the seizures. None of the above symptoms alone is a prerequisite for diagnosis. Recurrent seizures may not be stereotyped. The same child may have brief or prolonged seizures and autonomic manifestations may be severe or inconspicuous. The full emetic triad (nausea, retching, vomiting) culminates in vomiting in 74% of the seizures; in others only nausea or retching occur, and in a few, none of the emetic symptoms are apparent.
Most of the seizures are prolonged and half of them last more than 30 minutes thus constituting autonomic status epilepticus, which is the more common nonconvulsive status epilepticus in normal children. Characteristically, even after the most severe seizures and autonomic status epilepticus, the child is normal after a few hours of sleep, which is both diagnostic and reassuring. However, it has been recently reported that sometime after status epilepticus in children with Panayiotopoulos syndrome a. growth of the frontal and prefrontal lobes is slightly decreased and b.the scores on the neuropsychological tests is decreased.
Focal onset hemiconvulsions or generalised convulsions occur in nearly half of the seizures. These are usually shorter than the preceding autonomic manifestations but in a few cases a. they may be prolonged constituting convulsive status epilepticus or b. the preceding autonomic manifestations are brief and not apparent
Seizures can occur at any time but they are more common during sleep.