Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Psychiatric syndromes often called "psychopathological syndromes" (psychopathology is a psychic dysfunction occurring in mental disorder, also it's the study of the origin, diagnosis, development, and treatment of mental disorders).
In Russia those psychopathological syndromes are used in modern clinical practice and described in psychiatric literature in the details: asthenic syndrome, obsessive syndrome, emotional syndromes (for example, manic syndrome, depressive syndrome), Cotard's syndrome, catatonic syndrome, hebephrenic syndrome, delusional and hallucinatory syndromes (for example, paranoid syndrome, paranoid-hallucinatory syndrome, Kandinsky-Clérambault's syndrome also known as syndrome of psychic automatism, hallucinosis), paraphrenic syndrome, psychopathic syndromes (includes all personality disorders), clouding of consciousness syndromes (for example, twilight clouding of consciousness, amential syndrome also known as amentia, delirious syndrome, stunned consciousness syndrome, oneiroid syndrome), hysteric syndrome, neurotic syndrome, Korsakoff's syndrome, hypochondriacal syndrome, paranoiac syndrome, senestopathic syndrome, encephalopathic syndrome.
There are some examples of the psychopathological syndromes used in modern Germany: psychoorganic syndrome, depressive syndrome, paranoid-hallucinatory syndrome, obsessive-compulsive syndrome, autonomic syndrome, hostility syndrome, manic syndrome, apathy syndrome.
Also well known Münchausen syndrom, Ganser syndrome, neuroleptic-induced deficit syndrome, olfactory reference syndrome.
A syndrome is a set of medical signs and symptoms occurring together, constitutes a particular disease or disorder. The word derives from the Greek σύνδρομον, meaning "concurrence". In some instances, a syndrome is so closely linked with a pathogenesis or cause that the words "syndrome", "disease", and "disorder" end up being used interchangeably for them. This is especially true of inherited syndromes. For example, Down syndrome, Wolf–Hirschhorn syndrome, and Andersen syndrome are disorders with known pathogeneses, so each is more than just a set of signs and symptoms, despite the "syndrome" nomenclature. In other instances, a syndrome is not specific to only one disease. For example, toxic shock syndrome can be caused by various toxins; premotor syndrome can be caused by various brain lesions; and premenstrual syndrome is not a disease but simply a set of symptoms.
If an underlying genetic cause is suspected but not known, a condition may be referred to as a genetic association (often just "association" in context). By definition, an association indicates that the collection of signs and symptoms occurs in combination more frequently than would be likely by chance alone.
Syndromes are often named after the physician or group of physicians that discovered them or initially described the full clinical picture. Such eponymous syndrome names are examples of medical eponyms. Recently, there has been a shift towards naming conditions descriptively (by symptoms or underlying cause) rather than eponymously, but the eponymous syndrome names often persist in common usage.
The brain is abnormally smooth, with fewer folds and grooves. The face, especially in children, has distinct characteristics including a short nose with upturned nares, thickened upper lip with a thin vermilion upper border, frontal bossing, small jaw, low-set posteriorily rotated ears, sunken appearance in the middle of the face, widely spaced eyes, and hypertelorism. The forehead is prominent with bitemporal hollowing.
Characteristics that are not visual include mental retardation, pre- and postnatal growth retardation, epilepsy, and reduced lifespan.
Failure to thrive, feeding difficulties, seizures and decreased spontaneous activity are often seen. Death usually occurs in infancy and childhood.
Multiple abnormalities of the brain, kidneys, and gastrointestinal tract (the stomach and intestines) may occur.
The syndrome is a rare clinical disorder.
- Physical
- Overgrowth
- Accelerated skeletal maturation
- Dysmorphic facial features
- Prominent eyes
- Bluish sclerae
- Coarse eyebrows
- Upturned nose
- Radiologic examination
- Accelerated osseous maturation
- Phalangeal abnormalities
- Tubular thinning of the long bones
- Skull abnormalities
- Mental
- Often associated with intellectual disability (of variable degree)
Miller–Dieker syndrome (abbreviated MDS), Miller–Dieker lissencephaly syndrome (MDLS), and chromosome 17p13.3 deletion syndrome is a micro deletion syndrome characterized by congenital malformations. Congenital malformations are physical defects detectable in an infant at birth which can involve many different parts of the body including the brain, hearts, lungs, liver, bones, or intestinal tract.
MDS is a contiguous gene syndrome - a disorder due to the deletion of multiple gene loci adjacent to one another. The disorder arises from the deletion of part of the small arm of chromosome 17p (which includes both the "LIS1" and "14-3-3 epsilon" genes), leading to partial monosomy. There may be unbalanced translocations (i.e. 17q:17p or 12q:17p), or the presence of a ring chromosome 17.
This syndrome should not be confused with Miller syndrome, an unrelated rare genetic disorder, or Miller Fisher syndrome, a form of Guillain–Barré syndrome.
The first symptoms of Guillain–Barré syndrome are numbness, tingling, and pain, alone or in combination. This is followed by weakness of the legs and arms that affects both sides equally and worsens over time. The weakness can take half a day to over two weeks to reach maximum severity, and then becomes steady. In one in five people, the weakness continues to progress for as long as four weeks. The muscles of the neck may also be affected, and about half experience involvement of the cranial nerves which supply the head and face; this may lead to weakness of the muscles of the face, swallowing difficulties and sometimes weakness of the eye muscles. In 8%, the weakness affects only the legs (paraplegia or paraparesis). Involvement of the muscles that control the bladder and anus is unusual. In total, about a third of people with Guillain–Barré syndrome continue to be able to walk. Once the weakness has stopped progressing, it persists at a stable level ("plateau phase") before improvement occurs. The plateau phase can take between two days and six months, but the most common duration is a week. Pain-related symptoms affect more than half, and include back pain, painful tingling, muscle pain and pain in the head and neck relating to irritation of the lining of the brain.
Many people with Guillain–Barré syndrome have experienced the signs and symptoms of an infection in the 3–6 weeks prior to the onset of the neurological symptoms. This may consist of upper respiratory tract infection (rhinitis, sore throat) or diarrhea.
In children, particularly those younger than six years old, the diagnosis can be difficult and the condition is often initially mistaken (sometimes for up to two weeks) for other causes of pains and difficulty walking, such as viral infections, or bone and joint problems.
On neurological examination, characteristic features are the reduced power and reduced or absent tendon reflexes (hypo- or areflexia, respectively). However, a small proportion has normal reflexes in affected limbs before developing areflexia, and some may have exaggerated reflexes. In the "Miller Fisher variant" subtype of Guillain–Barré syndrome (see below), a triad of weakness of the eye muscles, abnormalities in coordination, as well as absent reflexes can be found. The level of consciousness is normally unaffected in Guillain–Barré syndrome, but the Bickerstaff brainstem encephalitis subtype may feature drowsiness, sleepiness, or coma.
Guillain–Barré syndrome (GBS) is a rapid-onset muscle weakness caused by the immune system damaging the peripheral nervous system. The initial symptoms are typically changes in sensation or pain along with muscle weakness, beginning in the feet and hands. This often spreads to the arms and upper body with both sides being involved. The symptoms develop over hours to a few weeks. During the acute phase, the disorder can be life-threatening with about 15% developing weakness of the breathing muscles requiring mechanical ventilation. Some are affected by changes in the function of the autonomic nervous system, which can lead to dangerous abnormalities in heart rate and blood pressure.
The cause is unknown. The underlying mechanism involves an autoimmune disorder in which the body's immune system mistakenly attacks the peripheral nerves and damages their myelin insulation. Sometimes this immune dysfunction is triggered by an infection or, less commonly, surgery or vaccination. The diagnosis is usually made based on the signs and symptoms, through the exclusion of alternative causes, and supported by tests such as nerve conduction studies and examination of the cerebrospinal fluid. There are a number of subtypes based on the areas of weakness, results of nerve conduction studies, and the presence of certain antibodies. It is classified as an acute polyneuropathy.
In those with severe weakness, prompt treatment with intravenous immunoglobulins or plasmapheresis, together with supportive care, will lead to good recovery in the majority. Recovery may take weeks to years. About a third have some permanent weakness. Globally death occurs in about 7.5% of those affected. Guillain–Barré syndrome is rare, at one or two cases per 100,000 people every year. Both sexes and all parts of the world have similar rates of disease. The syndrome is named after the French neurologists Georges Guillain and Jean Alexandre Barré, who described it with André Strohl in 1916.
Little is known about the natural history of Roberts syndrome due to its wide clinical variability. The prognosis of the disease depends on the malformations, as the severity of the malformations correlates with survival. The cause of death for most fatalities of Roberts syndrome have not been reported; however, five deaths were reportedly due to infection.
The following are observations that have been made in individuals with cytogenetic findings of PCS/HR or ESCO2 mutations:
- The symptom of prenatal growth retardation is the most common finding and can be moderate to severe. Postnatal growth retardation can also be moderate to severe and correlates with the degree of severity of limb and craniofacial malformations.
- In limb malformations, the upper limbs are typically more severely affected than the lower limbs. There have been many cases of only upper limb malformation.
- In hand malformations, the thumb is most often affected, followed by the fifth finger (the little finger). In severe cases, the patient may only have three fingers and in rare cases only one.
- In craniofacial malformations, mildly affected individuals will have no abnormalities of the palate. The most severely affected will have a fronto-ethmoid-nasal-maxillary encephalocele.
- The severity of limb malformations and craniofacial malformations is correlated.
- Other abnormalities can occur in different parts of the body, including:
- Heart- atrial septal defects, ventricular septal defects, patent ductus arteriosus
- Kidneys- polycystic kidney, horseshoe kidney
- Male Genitals- enlarged penis, cryptorchidism
- Female Genitals- enlarged clitoris
- Hair- sparse, silvery-blonde scalp hair
- Cranial Nerve Paralysis, Moyamoya disease, Stroke, Intellectual disability
Respiratory complications are often cause of death in early infancy.
The following is a list of symptoms that have been associated with Roberts syndrome:
- Bilateral Symmetric Tetraphocomelia- a birth defect in which the hands and feet are attached to shortened arms and legs
- Prenatal Growth Retardation
- Hypomelia (Hypoplasia)- the incomplete development of a tissue or organ; less drastic than aplasia, which is no development at all
- Oligodactyly- fewer than normal number of fingers or toes
- Thumb Aplasia- the absence of a thumb
- Syndactyly- condition in which two or more fingers (or toes) are joined together; the joining can involve the bones or just the skin between the fingers
- Clinodactyly- curving of the fifth finger (little finger) towards the fourth finger (ring finger) due to the underdevelopment of the middle bone in the fifth finger
- Elbow/Knee Flexion Contractures- an inability to fully straighten the arm or leg
- Cleft Lip- the presence of one or two vertical fissures in the upper lip; can be on one side (unilateral) or on both sides (bilateral)
- Cleft Palate- opening in the roof of the mouth
- Premaxillary Protrusion- upper part of the mouth sticks out farther than the lower part of the mouth
- Micrognathia- small chin
- Microbrachycephaly- smaller than normal head size
- Malar Hypoplasia- underdevelopment of the cheek bones
- Downslanting Palpebral Fissures- the outer corners of the eyes point downwards
- Ocular Hypertelorism- unusually wide-set eyes
- Exophthalmos- a protruding eyeball
- Corneal Clouding- clouding of the front-most part of the eye
- Hypoplastic Nasal Alae- narrowing of the nostrils that can decrease the width of the nasal base
- Beaked Nose- a nose with a prominent bridge that gives it the appearance of being curved
- Ear Malformations
- Intellectual disability
- Encephalocele (only in severe cases)- rare defect of the neural tube characterized by sac-like protrusions of the brain
Mortality is high among those severely affected by Roberts syndrome; however, mildly affected individuals may survive to adulthood
It can be detected by the naked eye as well as dental or skull X-Ray testing.
Heart-hand syndrome type 1 is more commonly known as Holt–Oram syndrome. Is the most prevalent form of heart-hand syndrome.
It is an autosomal dominant disorder that affects bones in the arms and hands (the upper limbs) and may also cause heart problems. The syndrome includes an absent radial bone in the arms, an atrial septal defect, and a first degree heart block.
Polyradiculoneuropathy describes a condition in which polyneuropathy and polyradiculopathy occur together. An example is Guillain–Barré syndrome.
Treatment with a single course of intravenous immunoglobulin (IVIG) infusions has been demonstrated to be a potentially effective treatment (reported to have caused prolonged remission in a case associated with systemic lupus (Systemic lupus erythematosus) ).
In order to diagnose Bickerstaff brainstem encephalitis, ataxia and ophthalmoplegia must be present. These are also diagnostic features of Miller Fisher syndrome, and so Bickerstaff's is only diagnosed if other features are present which exclude Miller Fisher syndrome. These may include drowsiness, coma or hyperreflexia. When the condition is defined in this way, a number of other features are commonly but not always found: among these are weakness of the limbs, the face, and/or the bulbar muscles; abnormalities of the pupils; and absent reflexes.
Like some other autoimmune diseases, the condition usually follows a minor infection, such as a respiratory tract infection or gastroenteritis.
Heart-hand syndrome type 2 is also known as Berk–Tabatznik syndrome. Berk–Tabatznik syndrome is a condition with an unknown cause that shows symptoms of short stature, congenital optic atrophy and brachytelephalangy. This condition is extremely rare with only two cases being found.
Bickerstaff brainstem encephalitis is a rare inflammatory disorder of the central nervous system, first described by Edwin Bickerstaff in 1951. It may also affect the peripheral nervous system, and has features in common with both Miller Fisher syndrome and Guillain–Barré syndrome.
All people with ALPS have signs of lymphoproliferation, which makes it the most common clinical manifestation of the disease. The increased proliferation of lymphoid cells can cause the size of lymphoid organs such as the lymph nodes and spleen to increase (lymphadenopathy and splenomegaly, present in respectively over 90% and over 80% of patients). The liver is enlarged (hepatomegaly in 30 - 40% of patients).
Autoimmune disease is the second most common clinical manifestation and one that most often requires treatment. Autoimmune cytopenias: Most common. Can be mild to very severe. Can be intermittent or chronic. These include: Autoimmune hemolytic anemia, Autoimmune neutropenia, Autoimmune thrombocytopenia.
Other signs can affect organ systems similar to systemic lupus erythematosus (least common, affecting <5% of patients) Symptoms of the nervous system include: Autoimmune cerebellar ataxia; Guillain–Barré syndrome; transverse myelitis. Gastrointestinal signs like Autoimmune esophagitis, gastritis, colitis, hepatitis, pancreatitis can be found or (Dermatologic) Urticaria, (Pulmonary) bronchiolitis obliterans, (Renal) Autoimmune glomerulonephritis, nephrotic syndrome.
Another sign are cancers such as Hodgkin and non-Hodgkin lymphomas which appear to be increased, possibly due to Epstein–Barr virus-encoded RNA-positivity. Some carcinomas may occur. Unaffected family members with genetic mutations are also at an increased risk of developing cancer.
While not always pathological, it can present as a birth defect in multiple syndromes including:
- Catel–Manzke syndrome
- Bloom syndrome
- Coffin–Lowry syndrome
- congenital rubella
- Cri du chat syndrome
- DiGeorge's syndrome
- Ehlers-Danlos syndrome
- fetal alcohol syndrome
- Hallermann-Streiff syndrome
- Hemifacial microsomia (as part of Goldenhar syndrome)
- Juvenile idiopathic arthritis
- Marfan syndrome
- Noonan syndrome
- Pierre Robin syndrome
- Prader–Willi syndrome
- Progeria
- Russell-Silver syndrome
- Seckel syndrome
- Smith-Lemli-Opitz syndrome
- Treacher Collins syndrome
- Trisomy 13 (Patau syndrome)
- Trisomy 18 (Edwards syndrome)
- Wolf–Hirschhorn syndrome
- X0 syndrome (Turner syndrome)
The main symptom is meningoencephalitis which happens in ~75% of NBD patients. Other general symptoms of Behçet's disease are also present among parenchymal NBD patients such as fever, headache, genital ulcers, genital scars, and skin lesions. When the brainstem is affected, ophthalmoparesis, cranial neuropathy, and cerebellar or pyramidal dysfunction may be observed. Cerebral hemispheric involvement may result in encephalopathy, hemiparesis, hemisensory loss, seizures, dysphasia, and mental changes including cognitive dysfunction and
psychosis. As for the spinal cord involvement, pyramidal signs in the limbs, sensory level dysfunction, and, commonly, sphincter dysfunction may be observed.
Some of the symptoms are less common such as stroke (1.5%), epilepsy (2.2–5%), brain tumor, movement disorder, acute meningeal syndrome, and optic neuropathy.
A number of terms are used to describe critical illness polyneuropathy, partially because there is often neuropathy and myopathy in the same person, and nerve and muscle degeneration are difficult to distinguish from each other in this condition. Terms used for the condition include: critical illness polyneuromyopathy, critical illness neuromyopathy, and critical illness myopathy and neuropathy (CRIMYNE). Bolton's neuropathy is an older term, which is no longer used.
The initial signs and symptoms of NBD are usually very general. This makes NBD hard to diagnose until the patients experience a severe neurological damage. In addition, the combination of symptoms varies among patients.
Acute motor axonal neuropathy (AMAN) is a variant of Guillain–Barré syndrome. It is characterized by acute paralysis and loss of reflexes without sensory loss. Pathologically, there is motor axonal degeneration with antibody-mediated attacks of motor nerves and nodes of Ranvier.
People with CIP/CIM have diffuse, symmetric, flaccid muscle weakness. CIP/CIM typically develops in the setting of a critical illness and immobilization, so patients with CIP/CIM are often receiving treatment in the intensive care unit (ICU).
Weakness (motor deficits) occurs in generalized fashion, rather than beginning in one region of the body and spreading. Limb and respiratory (diaphragm) muscles are especially affected. The muscles of the face are usually spared, but in rare cases, the eye muscles may be weakened, leading to ophthalmoplegia.
Respiratory difficulties can be caused by atrophy of the muscles between the ribs (intercostals), atrophy of the diaphragm muscle, and degeneration of the nerve that stimulates the diaphragm (phrenic nerve). This can prolong the time the wean a person off of a breathing machine (mechanical ventilation) by as much as 7 – 13 days.
Deep tendon reflexes may be lost or diminished, and there may be bilateral symmetric flaccid paralysis of the arms and legs. The nervous system manifestations are typically limited to peripheral nerves, as the central nervous system is usually unaffected.
The syndrome typically presents as a progressive flaccid symmetric paralysis with areflexia, often causing respiratory failure. Electromyographic studies and nerve conduction studies show normal motor conduction velocity and latency with decreased amplitude of compound muscle action potentials. F wave and sensory nerve action potentials are often normal in this illness. Pathologically, it is a noninflammatory axonopathy without demyelination. Antibodies attack the coating of the motor neurons without causing inflammation or loss of myelin. It does not affect sensory neurons, so sensation remains intact despite loss of movement.
2003 nomenclature
- IA - Fas
- IB - Fas ligand
- IIA - Caspase 10
- IIB - Caspase 8
- III - unknown
- IV - Neuroblastoma RAS viral oncogene homolog
Revised nomenclature (2010)
- ALPS-FAS: Fas. Germline FAS mutations. 70% of patients. Autosomal dominant. Dominant negative and haploinsufficient mutations described.
- ALPS-sFAS: Fas. Somatic FAS mutations in DNT compartment. 10% of patients
- ALPS-FASL: Fas ligand. Germline FASL mutations. 3 reported cases
- ALPS-CASP10: Caspase 10. Germline CASP10 mutation. 2% of patients
- ALPS-U: Undefined. 20% of patients
- CEDS: Caspase 8 deficiency state. No longer considered a subtype of ALPS but distinct disorder
- RALD: NRAS, KRAS. Somatic mutations in NRAS and KRAS in lympocyte compartment. No longer considered a subtype of ALPS but distinct disesase