Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Axillary nerve palsy patients present themselves with differing symptoms. For instance, some axillary nerve palsy patients complain that they cannot bend their arm at the elbow, however no other pain or discomfort exists. To further complicate diagnosis, onset of palsy can be delayed and may not be noticed until 12-24 hours after the trauma of shoulder region occurred. Therefore it is important to recognize the symptoms, but also to realize that different people have various combinations of them.
Symptoms include:
- cannot bend arm at the elbow
- deficiency of deltoid muscle function
- different regions of skin around the deltoid area can lack sensation
- unable to raise arm at the shoulder
Axillary nerve palsy is a neurological condition in which the axillary (also called circumflex) nerve has been damaged by shoulder dislocation. It can cause weak deltoid and sensory loss below the shoulder. Since this is a problem with just one nerve, it is a type of Peripheral neuropathy called mononeuropathy. Of all brachial plexus injuries, axillary nerve palsy represents only .3% to 6% of them.
Anyone experiencing radial nerve dysfunction could also experience any of the following symptoms:
- Lost ability or discomfort in extending the elbow
- Lost ability or discomfort bending hand back at the wrist
- Numbness
- Abnormal sensations near the thumb, index and middle fingers
- Sharp or burning pain
- Weakness in grip
- Drooping of the hand, also called wrist drop
The paralysis can be partial or complete; the damage to each nerve can range from bruising to tearing. The most commonly involved root is C5 (aka Erb's point: the union of C5 & C6 roots) as this is mechanically the furthest point from the force of traction, therefore, the first/most affected. Erb–Duchenne palsy presents as a lower motor neuron syndrome associated with sensibility disturbance and vegetative phenomena.
The most commonly involved nerves are the suprascapular nerve, musculocutaneous nerve, and the axillary nerve.
The signs of Erb's Palsy include loss of sensation in the arm and paralysis and atrophy of the deltoid, biceps, and brachialis muscles. "The position of the limb, under such conditions, is characteristic: the arm hangs by the side and is rotated medially; the forearm is extended and pronated. The arm cannot be raised from the side; all power of flexion of the elbow is lost, as is also supination of the forearm". The resulting biceps damage is the main cause of this classic physical position commonly called "waiter's tip".
If the injury occurs at age early enough to affect development (e.g. as a neonate or infant), it often leaves the patient with stunted growth in the affected arm with everything from the shoulder through to the fingertips smaller than the unaffected arm. This also leaves the patient with impaired muscular, nervous and circulatory development. The lack of muscular development leads to the arm being much weaker than the unaffected one, and less articulate, with many patients unable to lift the arm above shoulder height unaided, as well as leaving many with an elbow contracture.
The lack of development to the circulatory system can leave the arm with almost no ability to regulate its temperature, which often proves problematic during winter months when it would need to be closely monitored to ensure that the temperature of the arm was not dropping too far below that of the rest of the body. However the damage to the circulatory system also leaves the arm with another problem. It reduces the healing ability of the skin, so that skin damage takes far longer than usual to heal, and infections in the arm can be quite common if cuts are not sterilized as soon as possible. This will often cause many problems for children since they often injure themselves in the course of their childhoods.
The nervous damage is often the most problematic of the side effects to Erb's Palsy, but it is also the most varying. There have been cases of patients who have lost complete sensory perception within the arm after procedures whereas they had full sensory perception before. The most common area for a loss of sensory perception (except where the arm faces a total loss) is that between the shoulder and the elbow since the nerves which provide information from that area to the brain are also those first damaged in the initial causative trauma.
Based on the location of the nerve damage, brachial plexus injuries can affect part of or the entire arm. For example, musculocutaneous nerve damage weakens elbow flexors, median nerve damage causes proximal forearm pain, and paralysis of the ulnar nerve causes weak grip and finger numbness. In some cases, these injuries can cause total and irreversible paralysis. In less severe cases, these injuries limit use of these limbs and cause pain.
The cardinal signs of brachial plexus injury then, are weakness in the arm, diminished reflexes, and corresponding sensory deficits.
1. Erb's palsy. "The position of the limb, under such conditions, is characteristic: the arm hangs by the side and is rotated medially; the forearm is extended and pronated. The arm cannot be raised from the side; all power of flexion of the elbow is lost, as is also supination of the forearm".
2. In Klumpke's paralysis, a form of paralysis involving the muscles of the forearm and hand, a characteristic sign is the "clawed hand", due to loss of function of the ulnar nerve and the intrinsic muscles of the hand it supplies.
The appearance of the affected arm (or arms) depends on the individual case. In some cases the arm may lack the ability to straighten or rotate but otherwise function normally giving the overall appearance of the arm to be stiff and crooked. Whereas in other circumstances the arm has little to no control and has a "loose" appearance. Treatment such as physiotherapy, massage and electrical stimulation can help to prevent this early on (or throughout) the patient's life by strengthening the arm.
In some cases, again, individuals may suffer a great deal of discomfort. For example, they may experience a severe cramping pain that lasts for some time and is particularly painful after they have slept, running from the shoulder all the way down to the wrist. Although pain does not affect everyone with Erb's Palsy, it can be extremely uncomfortable to those that it does and can even cause patients to be physically sick or faint. This extreme nerve pain is mostly common during the final stages of growth and almost always eases off in time. Other pains that Erb's Palsy sufferers might endure include strained muscle, stiffness, circulatory problems and cramp. Different factors are dependent on the severity of the condition and can vary, so whilst some patient experience a lot of pain, some patients may experience no pain at all and for their affected arm to simply be visually crooked.
Discomfort with the shoulder blade is also extremely common in Erb's palsy as the shoulder is often at risk of dislocation. This can result, again, in sickness or lack of sleep.
Symptoms (and signs) of radial neuropathy vary depending on the severity of the trauma; however, common symptoms may include wrist drop, numbness (back of the hand and wrist), and inability to voluntarily straighten the fingers. Loss of wrist extension is due to loss of the ability to move of the posterior compartment of forearm muscles.
In the event of lacerations to the wrist area the symptom would therefore be "sensory". Additionally, depending on the type of trauma other nerves may be affected such as the median nerve and axillary nerves.
Radial neuropathy (or radial mononeuropathy) is a type of mononeuropathy which results from acute trauma to the radial nerve that extends the length of the arm. It is known as transient paresthesia when sensation is temporarily abnormal.
Radial nerve dysfunction is also known as radial neuropathy or radial mononeuropathy. It is a problem associated with the radial nerve resulting from injury consisting of acute trauma to the radial nerve. The damage has sensory consequences, as it interferes with the radial nerve's innervation of the skin of the posterior forearm, lateral three digits, and the dorsal surface of the side of the palm. The damage also has motor consequences, as it interferes with the radial nerve's innervation of the muscles associated with the extension at the elbow, wrist, and figers, as well the supination of the forearm. This type of injury can be difficult to localize, but relatively common, as many ordinary occurrences can lead to the injury and resulting mononeuropathy. One out of every ten patients suffering from radial nerve dysfunction do so because of a fractured humerus.
Injuries to the arm, forearm or wrist area can lead to various nerve disorders. One such disorder is median nerve palsy. The median nerve controls the majority of the muscles in the forearm. It controls abduction of the thumb, flexion of hand at wrist, flexion of digital phalanx of the fingers, is the sensory nerve for the first three fingers, etc. Because of this major role of the median nerve, it is also called the eye of the hand. If the median nerve is damaged, the ability to abduct and oppose the thumb may be lost due to paralysis of the thenar muscles. Various other symptoms can occur which may be repaired through surgery and tendon transfers. Tendon transfers have been very successful in restoring motor function and improving functional outcomes in patients with median nerve palsy.
The severity of brachial plexus injury is determined by the type of nerve damage. There are several different classification systems for grading the severity of nerve and brachial plexus injuries. Most systems attempt to correlate the degree of injury with symptoms, pathology and prognosis. Seddon's classification, devised in 1943, continues to be used, and is based on three main types of nerve fiber injury, and whether there is continuity of the nerve.
1. Neurapraxia: The mildest form of nerve injury. It involves an interruption of the nerve conduction without loss of continuity of the axon. Recovery takes place without wallerian degeneration.
2. Axonotmesis: Involves axonal degeneration, with loss of the relative continuity of the axon and its covering of myelin, but preservation of the connective tissue framework of the nerve (the encapsulating tissue, the epineurium and perineurium, are preserved).
3. Neurotmesis: The most severe form of nerve injury, in which the nerve is completely disrupted by contusion, traction or laceration. Not only the axon, but the encapsulating connective tissue lose their continuity. The most extreme degree of neurotmesis is transsection, although most neurotmetic injuries do not produce gross loss of continuity of the nerve but rather, internal disruption of the nerve architecture sufficient to involve perineurium and endoneurium as well as axons and their covering. It requires surgery, with unpredictable recovery.
A more recent and commonly used system described by the late Sir Sydney Sunderland, divides nerve injuries into five degrees: first degree or neurapraxia, following on from Seddon, in which the insulation around the nerve called myelin is damaged but the nerve itself is spared, and second through fifth degree, which denotes increasing severity of injury. With fifth degree injuries, the nerve is completely divided.
Injury to the spinal accessory nerve can cause an accessory nerve disorder or spinal accessory nerve palsy, which results in diminished or absent function of the sternocleidomastoid muscle and upper portion of the trapezius muscle.
This syndrome can begin with severe shoulder or arm pain followed by weakness and numbness. Those who suffer from Parsonage–Turner experience acute, sudden-onset pain radiating from the shoulder to the upper arm. Affected muscles become weak and atrophied, and in advanced cases, paralyzed. Occasionally, there will be no pain and just paralysis, and sometimes just pain, not ending in paralysis. MRI may assist in diagnosis. Scapular winging is commonly seen.
Medical procedures are the most common cause of injury to the spinal accessory nerve. In particular, radical neck dissection and cervical lymph node biopsy are among the most common surgical procedures that result in spinal accessory nerve damage. London notes that a failure to rapidly identify spinal accessory nerve damage may exacerbate the problem, as early intervention leads to improved outcomes.
Median nerve palsy is often caused by deep, penetrating injuries to the arm, forearm, or wrist. It may also occur from blunt force trauma or neuropathy.
Median nerve palsy can be separated into 2 subsections—high and low median nerve palsy. High MNP involves lesions at the elbow and forearm areas. Low median nerve palsy results from lesions at the wrist. Compression at the different levels of the median nerve produce variable symptoms and/or syndromes. The areas are:
- Underneath Struthers' ligament
- Passing by the bicipital aponeurosis (also known as lacertus fibrosus)
- Between the two heads of the pronator teres
- Compression in the carpal tunnel causes carpal tunnel syndrome
Fourth cranial nerve palsy also known as Trochlear nerve palsy, is a condition affecting Cranial Nerve 4 (IV), the Trochlear Nerve, which is one of the Cranial Cranial Nerves that causes weakness or paralysis to the Superior Oblique Muscle that it innervates. This condition often causes vertical or near vertical double vision as the weakened muscle prevents the eyes from moving in the same direction together.
Because the fourth cranial nerve is the thinnest and has the longest intracranial course of the cranial nerves, it is particularly vulnerable to traumatic injury.
To compensate for the double-vision resulting from the weakness of the superior oblique, patients characteristically tilt their head down and to the side opposite the affected muscle.
When present at birth, it is known as congenital fourth nerve palsy.
Ulnar tunnel syndrome, also known as Guyon's canal syndrome or Handlebar palsy, is caused by entrapment of the ulnar nerve in the Guyon canal as it passes through the wrist. Symptoms usually begin with a feeling of pins and needles in the ring and little fingers before progressing to a loss of sensation and/or impaired motor function of the intrinsic muscles of the hand which are innervated by the ulnar nerve. Ulnar tunnel syndrome is commonly seen in regular cyclists due to prolonged pressure of the Guyon's canal against bicycle handlebars. Another very common cause of sensory loss in the ring and pink finger is due to ulnar nerve entrapment at the Cubital Tunnel near the elbow, which is known as Cubital Tunnel Syndrome.
Ulnar tunnel syndrome may be characterized by the location or zone within the Guyon's canal at which the ulnar nerve is compressed. The nerve divides into a superficial sensory branch and a deeper motor branch in this area. Thus, Guyon's canal can be separated into three zones based on which portion of the ulnar nerve are involved. The resulting syndrome results in either muscle weakness or impaired sensation in the ulnar distribution.
Zone 2 type syndromes are most common, while Zone 3 are least common.
Parsonage–Turner syndrome, also known as acute brachial neuropathy and neuralgic amyotrophy, is a syndrome of unknown cause; although many specific risk factors have been identified (such as; post-operatively, post-infectious, post-traumatic or post-vaccination), the cause is still unknown. The condition manifests as a rare set of symptoms most likely resulting from autoimmune inflammation of unknown cause of the brachial plexus. (The brachial plexus is a complex network of nerves through which impulses reach the arms, shoulders and chest.)
Parsonage–Turner syndrome occurs in about 1.6 people per 100,000 per year.
A Holstein–Lewis fracture is a fracture of the distal third of the humerus resulting in entrapment of the radial nerve.
Cranial nerve disease is an impaired functioning of one of the twelve cranial nerves. Although it could theoretically be considered a mononeuropathy, it is not considered as such under MeSH.
It is possible for a disorder of more than one cranial nerve to occur at the same time, if a trauma occurs at a location where many cranial nerves run together, such as the jugular fossa. A brainstem lesion could also cause impaired functioning of multiple cranial nerves, but this condition would likely also be accompanied by distal motor impairment.
A neurological examination can test the functioning of individual cranial nerves, and detect specific impairments.
Injury of axillary nerve (axillary neuropathy) is a condition that can be associated with a surgical neck of the humerus fracture.
It can also be associated with a dislocated shoulder or with traction injury to the nerve, which may be caused by over-aggressive stretching or blunt trauma that does not result in fracture or dislocation. One form of this injury is referred to as axillary nerve palsy.
Injury most commonly occurs proximal to the quadrilateral space.
Injury in this nerve causes paralysis (as always) to the muscles innervated by it, most importantly deltoid muscle. This muscle is the main abductor of the shoulder joint from 18 to 90 degrees (from 0 to 18 by supraspinatus). Injury can result in a reduction in shoulder abduction. So a test can be applied to a patient with injury of axillary nerve by trying to abduct the injured shoulder against resistance.
The pain from axillary neuropathy is usually dull and aching rather than sharp, and increases with increasing range of motion. Many people notice only mild pain but considerable weakness when they try to use the affected shoulder.
The radial nerve is one of the major nerves of the upper limb. It innervates all of the muscles in the extensor compartments of the arm. Injury to the nerve can therefore result in significant functional deficit for the individual. It is vulnerable to injury with fractures of the humeral shaft as it lies in very close proximity to the bone (it descends within the spiral groove on the posterior aspect of the humerus). Characteristic findings following injury will be as a result of radial nerve palsy (e.g. weakness of wrist/finger extension and sensory loss over the dorsum of the hand).
The vast majority of radial nerve palsies occurring as a result of humeral shaft fractures are neuropraxias (nerve conduction block as a result of traction or compression of the nerve), these nerve palsies can be expected to recover over a period of months. A minority of palsies occur as a result of more significant axonotmeses (division of the axon but preservation of the nerve sheath) or the even more severe neurotmeses (division of the entire nerve structure). As a result, it is important for individuals sustaining a Holstein–Lewis injury to be carefully followed up as if there is no evidence of return of function to the arm after approximately three months, further investigations and possibly, nerve exploration or repair may be required. The exception to this rule is if the fracture to the humerus requires fixing in the first instance. In that case, the nerve should be explored at the same time that fixation is performed.
Facial nerve paralysis is characterised by unilateral facial weakness, with other symptoms including loss of taste, , and decreased salivation and tear secretion. Other signs may be linked to the cause of the paralysis, such as s in the ear, which may occur if the facial palsy is due to shingles. Symptoms may develop over several hours. Acute facial pain radiating from the ear may precede the onset of other symptoms.
The sciatic nerve (; also called "ischiadic nerve", "ischiatic nerve", "butt nerve") is a large nerve in humans and other animals. It begins in the lower back and runs through the buttock and down the lower limb. It is the longest and widest single nerve in the human body, going from the top of the leg to the foot on the posterior aspect. The sciatic nerve provides the connection to the nervous system for nearly the whole of the skin of the leg, the muscles of the back of the thigh, and those of the leg and foot. It is derived from spinal nerves L4 to S3. It contains fibers from both the anterior and posterior divisions of the lumbosacral plexus.