Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
This disease is an inflammation of the alveoli in the lungs. Initial symptoms are breathlessness especially after sudden exertion or when exposed to temperature change and can be very similar to asthma, hyperventilation syndrome or pulmonary embolism. One of the defining characteristics of "bird fanciers lung" is that many medical tests will show a normal range of results and it will be identified by X-ray or CT scans showing physical changes to the lung structure (a ground glass appearance). If someone with BFL has been exposed to avian proteins they will see symptoms within 4–6 hours. Symptoms include chills, fever, breathlessness, non-productive cough and chest discomfort. In the chronic form there is usually anorexia, weight loss, extreme tiredness and progressive interstitial fibrosis which is the most disabling feature of the disease as this causes scarring on the lungs which reduces the lungs ability to move air in and out, and as a result sufferers have repeated chest infections and ultimately struggle to breathe. This condition is occasionally fatal.
Bird fancier's lung is a type of hypersensitivity pneumonitis caused by bird droppings. The lungs become inflamed with granuloma formation.
Bird fancier's lung (BFL), also called "bird-breeder's lung" and "pigeon-breeder's lung", is a subset of hypersensitivity pneumonitis (HP). This disease is caused by the exposure to avian proteins present in the dry dust of the droppings and sometimes in the feathers of a variety of birds. Birds such as pigeons, parakeets, cockatiels, shell parakeets (budgerigars), parrots, turtle doves, turkeys and chickens have been implicated.
People who work with birds or own many birds are at risk. Bird hobbyists and pet store workers may also be at risk.
Some symptoms and signs of Bagassosis include breathlessness, cough, haemoptysis, slight fever. Acute diffuse bronchiolitis may also occur. An xray may show mottling of lungs or a shadow.
Fire breather’s pneumonia usually presents with certain non-specific symptoms, and may vary significantly among individuals. The most common symptoms include:
- Cough
- Dyspnea (shortness of breath)
- Chest pain
- Fever
- Weakness
- Hemoptysis (coughing up blood)
Acute pneumonitis typically begins asymptomatic, with a worsening of symptoms over the course of hours or days. Following aspiration of fuel, there is often a period of latency from 8–24 hours before the symptoms occur. Patients may not recall a specific instance of aspiration. Severe cases may lead to acute respiratory distress syndrome (ARDS).
Bagassosis has been shown to be due to a thermophilic actinomycetes for which the name thermoactinomycetes sacchari was suggested.
Farmer’s lung reactions can be categorized as acute and chronic reactions. Acute and chronic reactions have the same symptoms but for chronic reactions, the symptoms are much more severe. Farmer’s lung symptoms include:
- Chills
- Fever
- Irritating/harassing cough
- Runny nose
- Sputum streaked with blood
- Tightness of the chest
- Difficult and laboured breathing
- Crackling of breath
- Muscular pain
- Depression
These symptoms develop between four and eight hours after exposure to the antigens. In acute attacks, the symptoms mimic pneumonia or flu. In chronic attacks, there is a possibility of the victim going into shock and dying from the attack.
In the acute form of HP, symptoms may develop 4–6 hours following heavy exposure to the provoking antigen. Symptoms include fever, chills, malaise, cough, chest tightness, dyspnea, rash, swelling and headache. Symptoms resolve within 12 hours to several days upon cessation of exposure.
Acute HP is characterized by poorly formed noncaseating interstitial granulomas and mononuclear cell infiltration in a peribronchial distribution with prominent giant cells.
On chest radiographs, a diffuse micronodular interstitial pattern (at times with ground-glass density in the lower and middle lung zones) may be observed. Findings are normal in approximately 10% of patients." In high-resolution CT scans, ground-glass opacities or diffusely increased radiodensities are present. Pulmonary function tests show reduced diffusion capacity of lungs for carbon monoxide (DLCO). Many patients have hypoxemia at rest, and all patients desaturate with exercise. Extrinsic allergic alveolitis may eventually lead to Interstitial lung disease.
Occupational asthma is an occupational lung disease and a type of asthma. Like other types of asthma, it is characterized by airway inflammation, reversible airways obstruction, and bronchospasm, but it is caused by something in the workplace environment.
Symptoms include shortness of breath, tightness of the chest, nasal irritation, coughing and wheezing. The first person to use it in reference to a medical condition was Hippocrates, and he believed that tailors, anglers and metalworkers were more likely to be affected by the disease. Although much research has been done since, the inflammatory component of asthma was recognized only in the 1960s.
Hypersensitivity pneumonitis is a related condition, with many occupational examples (e.g. flock worker's lung, farmer's lung, and indium lung). However, although overlapping in many cases, hypersensitivity pneumonitis may be distinguished from occupational asthma in that it isn't restricted to only occupational exposure, and involves type III hypersensitivity and type IV hypersensitivity rather than the type I hypersensitivity of asthma. Also, unlike asthma, hypersensitivity pneumonitis targets lung alveoli rather than bronchi.
Patients with subacute HP gradually develop a productive cough, dyspnea, fatigue, anorexia, weight loss, and pleurisy. Symptoms are similar to the acute form of the disease, but are less severe and last longer. On chest radiographs, micronodular or reticular opacities are most prominent in mid-to-lower lung zones. Findings may be present in patients who have experienced repeated acute attacks.
The subacute, or intermittent, form produces more well-formed noncaseating granulomas, bronchiolitis with or without organizing pneumonia, and interstitial fibrosis.
The signs and symptoms of asbestosis typically manifest after a significant amount of time has passed following asbestos exposure, often several decades under current conditions in the US. The primary symptom of asbestosis is generally the slow onset of shortness of breath, especially with physical activity. Clinically advanced cases of asbestosis may lead to respiratory failure. When a physician listens with a stethoscope to the lungs of a person with asbestosis, they may hear inspiratory crackles.
The characteristic pulmonary function finding in asbestosis is a restrictive ventilatory defect. This manifests as a reduction in lung volumes, particularly the vital capacity (VC) and total lung capacity (TLC). The TLC may be reduced through alveolar wall thickening; however, this is not always the case. Large airway function, as reflected by FEV/FVC, is generally well preserved. In severe cases, the drastic reduction in lung function due to the stiffening of the lungs and reduced TLC may induce right-sided heart failure (cor pulmonale). In addition to a restrictive defect, asbestosis may produce reduction in diffusion capacity and a low amount of oxygen in the blood of the arteries.
Acute:
- Cough
- Difficulty Breathing
- Abnormal lung sounds (wet, gurgling sounding breaths)
- Chest pain, tightness or burning
Chronic:
- Persistent cough
- Shortness of breath
- Increased susceptibility to respiratory illness
Symptoms of chronic chemical pneumonitis may or may not be present, and can take months or years to develop to the point of noticeability.
The typical symptoms of UIP are progressive shortness of breath and cough for a period of months. In some patients, UIP is diagnosed only when a more acute disease supervenes and brings the patient to medical attention.
Fire breather's pneumonia, also known as fire breather's lung or fire-eater's lung, is a distinct type of exogenous—that is, originating outside the body—lipoid pneumonia (chemical pneumonitis) that results from inhalation or aspiration of hydrocarbons of different types, such as lamp oil. Accidental inhalation of hydrocarbon fuels can occur during fire breathing, fire eating, or other fire performance, and may lead to pneumonitis.
Symptoms can vary significantly among individuals, ranging from asymptomatic to a severe, life-threatening disease. Onset usually occurs within hours, though symptoms may not appear for several days. Lipoid pneumonia is a rare condition, but is an occupational hazard of fire performers.
Asbestosis is long term inflammation and scarring of the lungs due to asbestos. Symptoms may include shortness of breath, cough, wheezing, and chest pain. Complications may include lung cancer, mesothelioma, and pulmonary heart disease.
Asbestosis is caused by breathing in asbestos fibers. Generally it required a relatively large exposure over a long period of time. Such levels of exposure typically only occur in those who work with the material. All types of asbestos fibers are associated with concerns. It is generally recommended that currently existing asbestos be left undisturbed. Diagnosis is based upon a history of exposure together with medical imaging. It is a type of interstitial pulmonary fibrosis.
There is no specific treatment. Recommendations may include stopping smoking, influenza vaccination, pneumococcal vaccination, or oxygen therapy. Asbestosis affected about 157,000 people and resulted in 3,600 deaths in 2015. Asbestos use has been banned in a number of countries in an effort to prevent disease.
Less than five years of exposure or a single exposure to a high-concentration agent can result in symptoms. Coughing, wheezing, nasal irritation, shortness of breath, and chest tightness are the most common symptoms, all of which worsen after work and improve during time away from work. Pre-existing asthma can be exacerbated by similar agents.
Oral ingestion of hydrocarbons often is associated with symptoms of mucous membrane irritation, vomiting, and central nervous system depression. Cyanosis, tachycardia, and tachypnea may appear as a result of aspiration, with subsequent development of chemical pneumonitis. Other clinical findings include albuminuria, hematuria, hepatic enzyme derangement, and cardiac arrhythmias. Doses as low as 10 ml orally have been reported to be potentially fatal, whereas some patients have survived the ingestion of 60 ml of petroleum distillates. A history of coughing or choking in association with vomiting strongly suggests aspiration and hydrocarbon pneumonia. Hydrocarbon pneumonia is an acute hemorrhagic necrotizing disease that can develop within 24 h after the ingestion. Pneumonia may require several weeks for complete resolution.
Symptoms of chemical (hydrocarbon) pneumonia may include:
- burning of the nose, eyes, lips, mouth, and throat
- dry cough
- wet cough producing clear, yellow, or green mucus
- cough producing blood or frothy pink matter
- nausea or abdominal pain
- chest pain
- shortness of breath
- painful breathing or pleuritis (an inflammation of the outside covering of the lungs)
- headache
- flu symptoms
The cause of the scarring in UIP may be known (less commonly) or unknown (more commonly). Since the medical term for conditions of unknown cause is "idiopathic", the clinical term for UIP of unknown cause is idiopathic pulmonary fibrosis (IPF). Examples of known causes of UIP include systemic sclerosis/scleroderma, rheumatoid arthritis, asbestosis, and prolonged use of medications such as nitrofurantoin or amiodarone.
Lycoperdonosis is a respiratory disease caused by the inhalation of large amounts of spores from mature puffballs. It is classified as a hypersensitivity pneumonitis (also called extrinsic allergic alveolitis)—an inflammation of the alveoli within the lung caused by hypersensitivity to inhaled natural dusts. It is one of several types of hypersensitivity pneumonitis caused by different agents that have similar clinical features. Typical progression of the disease includes symptoms of a cold hours after spore inhalation, followed by nausea, rapid pulse, crepitant rales (a sound like that made by rubbing hairs between the fingers, heard at the end of inhalation), and dyspnea. Chest radiographs reveal the presence of nodules in the lungs. The early symptoms presented in combination with pulmonary abnormalities apparent on chest radiographs may lead to misdiagnosis of the disease as tuberculosis, histiocytosis, or pneumonia caused by "Pneumocystis carinii". Lycoperdonosis is generally treated with corticosteroids, which decrease the inflammatory response; these are sometimes given in conjunction with antimicrobials.
The disease was first described in the medical literature in 1967 by R.D. Strand and colleagues in the "New England Journal of Medicine". In 1976, a 4-year-old was reported developing the disease in Norway after purposely inhaling a large quantity of "Lycoperdon" spores to stop a nosebleed. "Lycoperdon" species are sometimes used in folk medicine in the belief that their spores have haemostatic properties. A 1997 case report discussed several instances of teenagers inhaling the spores. In one severe case, the individual inhaled enough spores so as to be able to blow them out of his mouth. He underwent bronchoscopy and then had to be on life support before recovering in about four weeks. In another instance, a teenager spent 18 days in a coma, had portions of his lung removed, and suffered severe liver damage. In Wisconsin, eight teenagers who inhaled spores at a party presented clinical symptoms such as cough, fever, shortness of breath, myalgia, and fatigue within a week. Five of the eight required hospitalization; of these, two required intubation to assist in breathing. The disease is rare, possibly because of the large quantity of spores that need to be inhaled for clinical effects to occur. Lycoperdonosis also occurs in dogs; in the few reported cases, the animals had been playing or digging in areas known to contain puffballs. Known species of puffballs implicated in the etiology of the published cases include the widespread "Lycoperdon perlatum" (the "devil's snuff-box", "L. gemmatum") and "Calvatia gigantea", both of the Lycoperdaceae family.
It can be classified into acute interstitial pneumonitis, blood pneumonitis, lymphocytic interstitial pneumonitis, radiation pneumonitis, and uremic pneumonitis.
Symptoms of pulmonary fibrosis are mainly:
- Shortness of breath, particularly with exertion
- Chronic dry, hacking coughing
- Fatigue and weakness
- Chest discomfort including chest pain
- Loss of appetite and rapid weight loss
Pulmonary fibrosis is suggested by a history of progressive shortness of breath (dyspnea) with exertion. Sometimes fine inspiratory crackles can be heard at the lung bases on auscultation. A chest x-ray may or may not be abnormal, but high-resolution CT will frequently demonstrate abnormalities.
Hydrocarbon pneumonitis is a kind of chemical pneumonitis which occurs with oral ingestion of hydrocarbons and associated aspiration. It occurs prominently among children, accounting for many hospital admissions each year. Common hydrocarbons involved are mineral spirits, mineral seal oil (common in furniture polish), lamp oil, kerosene (paraffin), turpentine (pine oil), gasoline, and lighter fluid. Pneumatocele is a complication of hydrocarbon pneumonitis. In both childhood and adult pneumonitis, hydrocarbon aspiration occurs at the time of initial ingestion event or subsequently with vomiting. Low viscosity of an ingested hydrocarbon is considered a major factor promoting aspiration (presumably for mechanical reasons). Contrary to aspiration hydrocarbon pneumonitis, hydrocarbon (solvent) vapor inhalation manifests primarily in either central nervous system or cardiac effects.
The pneumonia presents as a foreign body reaction causing cough, dyspnoea, and often fever. Haemoptysis has also been reported.
Chemical pneumonitis is inflammation of the lung caused by aspirating or inhaling irritants. It is sometimes called a "chemical pneumonia", though it is not infectious. There are two general types of chemical pneumonitis: acute and chronic.
Irritants capable of causing chemical pneumonitis include vomitus, barium used in gastro-intestinal imaging, chlorine gas (among other pulmonary agents), ingested gasoline or other petroleum distillates, ingested or skin absorbed pesticides, gases from electroplating, smoke and others. It may also be caused by the use of inhalants.
Mendelson's syndrome is a type of chemical pneumonitis.
Mineral oil should not be given internally to young children, pets, or anyone with a cough, hiatus hernia, or nocturnal reflux, because it can cause complications such as lipoid pneumonia. Due to its low density, it is easily aspirated into the lungs, where it cannot be removed by the body. In children, if aspirated, the oil can work to prevent normal breathing, resulting in death of brain cells and permanent paralysis and/or retardation
Pulmonary Langerhans cell histiocytosis, silicosis, coal workers pneumoconiosis, carmustine related pulmonary fibrosis, respiratory broncholitis associated with interstitial lung disease.
- Lower lung predominance
Idiopathic pulmonary fibrosis, pulmonary fibrosis associated with connective tissue diseases, asbestosis, chronic aspiration
- Central predominance (perihilar)
Sarcoidosis, berylliosis
- Peripheral predominance
Idiopathic pulmonary fibrosis, chronic eosinophilic pneumonia, cryptogenic organizing pneumonia
In many patients, symptoms are present for a considerable time before diagnosis. The most common clinical features of IPF include the following:
- Age over 50 years
- Dry, non-productive cough on exertion
- Progressive exertional dyspnea (shortness of breath with exercise)
- Dry, inspiratory bibasilar "velcro-like" crackles on auscultation (a crackling sound in the lungs during inhalation similar to Velcro being torn apart slowly, heard with a stethoscope).
- Clubbing of the digits, a disfigurement of the finger tips or toes (see image)
- Abnormal pulmonary function test results, with evidence of restriction and impaired gas exchange.
Some of these features are due to chronic hypoxemia (oxygen deficiency in the blood), are not specific for IPF, and can occur in other pulmonary disorders. IPF should be considered in all patients with unexplained chronic exertional dyspnea who present with cough, inspiratory bibasilar crackles, or finger clubbing.
Assessment of "velcro" crackles on lung auscultation is a practical way to improve the earlier diagnosis of IPF. Fine crackles are easily recognized by clinicians and are characteristic of IPF.
If bilateral fine crackles are present throughout the inspiratory time and are persisting after several deep breaths, and if remaining present on several occasions several weeks apart in a subject aged ≥60 years, this should raise the suspicion of IPF and lead to consideration of an HRCT scan of the chest which is more sensitive than a chest X-ray. As crackles are not specific for IPF, they must prompt a thorough diagnostic process.