Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Oropouche fever is characterized as a acute febrile illness, meaning that it begins with a sudden onset of a fever followed by severe clinical symptoms. It typically takes 4 to 8 days from the incubation period to first start noticing signs of infection, beginning from the bite of the infected mosquito or midge.
Fevers are the most common symptom with temperatures as high as 104F. Clinical symptoms include chills, headache, myalgia, arthralgia, dizziness, photophobia, vomiting, joint pains, epigastric pain, and rashes.
There also have been some cases where rashes resembles rubella and patients presented systematic symptoms including nausea, vomiting, diarrhea, conjunctive congestion, epigastric pain, and retro-orbitial pain.
The initial febrile episode typically passes after a few days, but it is very common to have a reoccurrence of these symptoms with a lesser intensity. Studies have shown this typically happens in about 60% of cases.
There are two ways in which the virus can progress, systematic and encephalitic, depending on the person's age. Encephalitic involves swelling of the brain and can be asymptomatic while the systemic illness occurs very abruptly. Those with the systemic illness usually recover within one to two weeks. While the encephalitis is more common among infants in adults and children it usually manifests after experiencing the systemic illness. Symptoms include high fever, muscle pain, altered mental status, headache, meningeal irritation, photophobia, and seizures, which occur three to 10 days after the bite of an infected mosquito. Due to the virus's effect on the brain, patients who survive can be left with mental and physical impairments such as personality disorders, paralysis, seizures, and intellectual impairment
West Nile virus (WNV) is a single-stranded RNA virus that causes West Nile fever. It is a member of the family Flaviviridae, specifically from the genus Flavivirus which also contain the Zika virus, dengue virus, and the yellow fever virus. The West Nile virus is primarily transmitted through mosquitoes, mostly by the Culex species. However, ticks have been found to carry the virus. The primary hosts of WNV are birds, so that the virus remains within a "bird-mosquito-bird" transmission cycle.
Oropouche fever is a tropical viral infection transmitted by biting midges and mosquitoes from the blood of sloths to humans. This disease is named after the region where it was first discovered and isolated at the Trinidad Regional Virus Laboratory in 1955 by the Oropouche River in Trinidad and Tobago. Oropouche fever is caused by a specific arbovirus, the Oropouche virus (OROV), of the Bunyaviridae family.
Large epidemics are common and very swift, one of the earliest largest having occurred at the city of Belém, in the Brazilian Amazon state of Pará, with 11,000 recorded cases. In the Brazilian Amazon, oropouche is the second most frequent viral disease, after dengue fever. Several epidemics have generated more than 263,000 cases, of which 130,000 alone occurred in the period from 1978 to 1980. Presently, in Brazil alone it is estimated that more than half a million cases have occurred. Nevertheless, clinics in Brazil may not have adequate testing reliability as they rely on symptoms rather than PCR viral sequencing, which is expensive and time consuming, in many cases there may be conviction with other similar mosquito borne viruses.
Eastern equine encephalitis (EEE), commonly called Triple E or, sleeping sickness (not to be confused with "Trypanosomiasis") is a zoonotic alphavirus and arbovirus present in North, Central and South America and the Caribbean. EEE was first recognized in Massachusetts, United States in 1831 when 75 horses died mysteriously of viral encephalitis.
Epizootics in horses have continued to occur regularly in the United States. It can also be identified in asses and zebras. Due to the rarity of the disease its occurrence can cause economic impact in relation to the loss of horses and poultry. EEE is found today in the eastern part of the country and is often associated with coastal plains. It can most commonly be found in east and gulf coast states. In Florida about one to two human cases are reported a year although over sixty cases of equine encephalitis are reported. Some years in which there are favorable conditions for the disease there number of equine cases are over two-hundred. Diagnosing equine encephalitis is challenging because many of the symptoms are shared with other illnesses and patients can be asymptomatic. Confirmations may require a sample of cerebral spinal fluid or brain tissue although CT scans and MRI scans are used to detect encephalitis. This could be an indication that the need to test for Eastern Equine Encephalitis is necessary. If a biopsy of the cerebral spinal fluid is taken it is sent to a specialized laboratory for testing.
EEEV is closely related to Venezuelan equine encephalitis virus and Western equine encephalitis virus.
BVDV infection has a wide manifestation of clinical signs including fertility issues, milk drop, pyrexia, diarrhoea and fetal infection. Occasionally, a severe acute form of BVD may occur. These outbreaks are characterized by thrombocytopenia with high morbidity and mortality. However, clinical signs are frequently mild and infection insidious, recognised only by BVDV’s immunosuppressive effects perpetuating other circulating infectious diseases (particularly scours and pneumonias).
About 80% of infected dogs with H3N8 show symptoms, usually mild (the other 20% have subclinical infections), and the fatality rate for Greyhounds in early outbreaks was 5 to 8%, although the overall fatality rate in the general pet and shelter population is probably less than 1%. Symptoms of the mild form include a cough that lasts for 10 to 30 days and possibly a greenish nasal discharge. Dogs with the more severe form may have a high fever and pneumonia. Pneumonia in these dogs is not caused by the influenza virus, but by secondary bacterial infections. The fatality rate of dogs that develop pneumonia secondary to canine influenza can reach 50% if not given proper treatment. Necropsies in dogs that die from the disease have revealed severe hemorrhagic pneumonia and evidence of vasculitis.
Cats with Avian Influenza exhibit symptoms that can result in death. They are one of the few species that can get Avian Influenza. The specific virus that they get is H5N1, which is a subtype of Avian Influenza. In order to get the virus, cats need to be in contact with waterfowl, poultry, or uncooked poultry that are infected. Two of the main organs that the virus affects are the lungs and liver.
Bovine viral diarrhea (BVD) or bovine viral diarrhoea (UK English), and previously referred to as bovine virus diarrhoea (BVD), is a significant economic disease of cattle that is endemic in the majority of countries throughout the world. The causative agent, bovine viral diarrhea virus (BVDV), is a member of the "Pestivirus" genus of the family Flaviviridae.
BVD infection results in a wide variety of clinical signs, due to its immunosuppressive effects, as well as having a direct effect on respiratory disease and fertility. In addition, BVD infection of a susceptible dam during a certain period of gestation can result in the production of a persistently infected (PI) fetus.
PI animals recognise intra-cellular BVD viral particles as ‘self’ and shed virus in large quantities throughout life; they represent the cornerstone of the success of BVD as a disease.
A cat that is infected with a high dose of the virus can show signs of fever, lethargy, and dyspnea. There have even been recorded cases where a cat has neurological symptoms such as circling or ataxia.
In a case in February 2004, a 2-year-old male cat was panting and convulsing on top of having a fever two days prior to death. This cat also had lesions that were identified as renal congestion, pulmonary congestion, edema, and pneumonia. Upon inspection, the cat also had cerebral congestion, conjunctivitis, and hemorrhaging in the serosae of the intestines.
However, a cat that is infected with a low dose of the virus may not necessarily show symptoms. Though they may be asymptomatic, they can still transfer small amounts of the virus.
Canine influenza (dog flu) is influenza occurring in canine animals. Canine influenza is caused by varieties of influenzavirus A, such as equine influenza virus H3N8, which in 2004 was discovered to cause disease in dogs. Because of the lack of previous exposure to this virus, dogs have no natural immunity to it. Therefore, the disease is rapidly transmitted between individual dogs. Canine influenza may be endemic in some regional dog populations of the United States. It is a disease with a high morbidity (incidence of symptoms) but a low incidence of death.
A newer form was identified in Asia during the 2000s and has since caused outbreaks in the US as well. It is a mutation of H3N2 that adapted from its avian influenza origins. Vaccines have been developed for both strains.
Zoonoses are infectious diseases of animals (usually vertebrates) that can naturally be transmitted to humans.
Major modern diseases such as Ebola virus disease and salmonellosis are zoonoses. HIV was a zoonotic disease transmitted to humans in the early part of the 20th century, though it has now evolved to a separate human-only disease. Most strains of influenza that infect humans are human diseases, although many strains of swine and bird flu are zoonoses; these viruses occasionally recombine with human strains of the flu and can cause pandemics such as the 1918 Spanish flu or the 2009 swine flu. "Taenia solium" infection is one of the neglected tropical diseases with public health and veterinary concern in endemic regions. Zoonoses can be caused by a range of disease pathogens such as viruses, bacteria, fungi and parasites; of 1,415 pathogens known to infect humans, 61% were zoonotic. Most human diseases originated in animals; however, only diseases that routinely involve animal to human transmission, like rabies, are considered direct zoonosis.
Zoonoses have different modes of transmission. In direct zoonosis the disease is directly transmitted from animals to humans through media such as air (influenza) or through bites and saliva (rabies). In contrast, transmission can also occur via an intermediate species (referred to as a vector), which carry the disease pathogen without getting infected. When humans infect animals, it is called reverse zoonosis or anthroponosis. The term is from Greek: ζῷον "zoon" "animal" and νόσος "nosos" "sickness".
In swine, an influenza infection produces fever, lethargy, sneezing, coughing, difficulty breathing and decreased appetite. In some cases the infection can cause abortion. Although mortality is usually low (around 1–4%), the virus can produce weight loss and poor growth, causing economic loss to farmers. Infected pigs can lose up to 12 pounds of body weight over a three- to four-week period. Swine have receptors to which both avian and mammalian influenza viruses are able to bind to, which leads to the virus being able to evolve and mutate into different forms. Influenza A is responsible for infecting swine, and was first identified in the summer of 1918. Pigs have often been seen as "mixing vessels", which help to change and evolve strains of disease that are then passed on to other mammals, such as humans.
Direct transmission of a swine flu virus from pigs to humans is occasionally possible (zoonotic swine flu). In all, 50 cases are known to have occurred since the first report in medical literature in 1958, which have resulted in a total of six deaths. Of these six people, one was pregnant, one had leukemia, one had Hodgkin's lymphoma and two were known to be previously healthy. Despite these apparently low numbers of infections, the true rate of infection may be higher, since most cases only cause a very mild disease, and will probably never be reported or diagnosed.
According to the Centers for Disease Control and Prevention (CDC), in humans the symptoms of the 2009 "swine flu" H1N1 virus are similar to those of influenza and of influenza-like illness in general. Symptoms include fever; cough, sore throat, watery eyes, body aches, shortness of breath, headache, weight loss, chills, sneezing, runny nose, coughing, dizziness, abdominal pain, lack of appetite and fatigue. The 2009 outbreak has shown an increased percentage of patients reporting diarrhea and vomiting as well. The 2009 H1N1 virus is not zoonotic swine flu, as it is not transmitted from pigs to humans, but from person to person through airborne droplets.
Because these symptoms are not specific to swine flu, a differential diagnosis of "probable" swine flu requires not only symptoms, but also a high likelihood of swine flu due to the person's recent and past medical history. For example, during the 2009 swine flu outbreak in the United States, the CDC advised physicians to "consider swine influenza infection in the differential diagnosis of patients with acute febrile respiratory illness who have either been in contact with persons with confirmed swine flu, or who were in one of the five U.S. states that have reported swine flu cases or in Mexico during the seven days preceding their illness onset." A diagnosis of "confirmed" swine flu requires laboratory testing of a respiratory sample (a simple nose and throat swab).
The most common cause of death is respiratory failure. Other causes of death are pneumonia (leading to sepsis), high fever (leading to neurological problems), dehydration (from excessive vomiting and diarrhea), electrolyte imbalance and kidney failure. Fatalities are more likely in young children and the elderly.
Respiratory infection is usually asymptomatic in pigs more than 2 months old, but it can cause abortion, high mortality in piglets, and coughing, sneezing, fever, constipation, depression, seizures, ataxia, circling, and excess salivation in piglets and mature pigs. Mortality in piglets less than one month of age is close to 100%, but it is less than 10% in pigs between one and six months of age. Pregnant swine can reabsorb their litters or deliver mummified, stillborn, or weakened piglets. In cattle (see next section), symptoms include intense itching followed by neurological signs and death. In dogs, symptoms include intense itching, jaw and pharyngeal paralysis, howling, and death Any infected secondary host generally only lives two to three days.
Genital infection appears to have been common in a great part of the 20th century in many European countries in swine herds, where boars from boar centres were used for natural service of sows or gilts. This disease manifestation has always been asymptomatic in affected pigs, and presence of the infection on a farm was detected only because of cases in cattle showing pruritus on the hindquarters (vaginal infection, see below).
In susceptible animals other than swine, infection is usually fatal, and the affected animals most often show intense pruritus in a skin area.
Pruritus in Aujeszky's disease is considered a phantom sensation, and virus has never been found at the site of pruritus.
Aujeszky's disease, usually called pseudorabies in the United States, is a viral disease in swine that has been endemic in most parts of the world. It is caused by "Suid herpesvirus 1" (SuHV1). Aujeszky's disease is considered to be the most economically important viral disease of swine in areas where hog cholera has been eradicated. Other mammals, such as humans, cattle, sheep, goats, cats, dogs, and raccoons, are also susceptible. The disease is usually fatal in these animal species bar humans.
The term "pseudorabies" is found inappropriate by many people, as SuHV1 is a herpesvirus and not related to the rabies virus.
Research on SuHV1 in pigs has pioneered animal disease control with genetically modified vaccines. SuHV1 is now used in model studies of basic processes during lytic herpesvirus infection, and for unravelling molecular mechanisms of herpesvirus neurotropism.
There are several diseases that are caused by avian reovirus, which includes, avian arthritis/tenosynovitis, runting-stunting syndrome, and blue wing disease in chickens. Blue wing disease affects young broiler chickens and has an average mortality rate of 10%. It causes intramuscular and subcutaneous hemorrhages and atrophy of the spleen, bursa of Fabricius, and thymus. When young chickens are experimentally infected with avian reovirus, it is spread rapidly throughout all tissues. This virus is spread most frequently in the skin and muscles, which is also the most obvious site for lesions. Avian arthritis causes significant lameness in joints, specifically the hock joints. In the most severe cases, viral arthritis has caused the tendon to rupture. Chickens that have contracted runting-stunting syndrome cause a number of individuals in a flock to appear noticeably small due to its delayed growth. Diseased chicks are typically pale, dirty, wet, and may have a distending abdomen. Some individuals may display “helicopter-like” feathers in their wings and other feather abnormalities. The virus has also been shown to cause osteoporosis.
Zoonotic transmission can occur in any context in which there is companionistic (pets), economic (farming, etc.), predatory (hunting, butchering or consuming wild game) or research contact with or consumption of animals, animal products, or animal derivatives (vaccines, etc.).
Avian reoviruses belong to the genus "Orthoreovirus", and "Reoviridae" family. They are non-enveloped viruses that undergo replication in the cytoplasm of infected cells. It has icosahedral symmetry and contains a double-shelled arrangement of surface protein. Virus particles can range between 70–80 nm. Morphologically, the virus is a double stranded RNA virus that is composed of ten segments. The genome and proteins that are encoded by the genome can be separated into three different sizes ranging from small, medium, or large. Of the eleven proteins that are encoded for by the genome, two are nonstructural, while the remaining nine are structural.
Avian reoviruses can withstand a pH range of 3.0–9.0. Ambient temperatures are suitable for the survival of these viruses, which become inactive at 56 °C in less than an hour. Common areas where this virus can survive include galvanized metal, glass, rubber, feathers, and wood shavings. Avian reovirus can survive for up to ten days on these common areas in addition to up to ten weeks in water.
Cultivation and observation of the effects of avian reovirus is most often performed in chicken embryos. If infected into the yolk sac, the embryo will succumb to death accompanied by hemorrhaging of the embryos and cause the foci on the liver to appear yellowish-green. There are several primary chicken cell cultures/areas that are susceptible to avian reoviruses, which include the lungs, liver, kidney, and fibroblasts of the chick embryo. Of the following susceptible areas, liver cells from the chick embryo have been found to be the most sensitive for primary isolation from clinical material.
Typically, the CPE effect of avian reoviruses is the production of syncytia. CPE, or cytopathic effects are the visible changes in a host cell that takes place because of viral infection. Syncytia is a single cell or cytoplasmic mass containing several nuclei, formed by fusion of cells or by division of nuclei.
A few days after the infective bite, a feeling of lassitude, abdominal distress and chills develop followed by fever of 39 °C to 40 °C, severe frontal headaches, muscle and joint aches, flushing of the face and a fast heart rate. After two days the fever begins to subside and the temperature returns to normal. Fatigue, a slow heart rate and low blood pressure may persist from few days to several weeks but complete recovery is the rule.
Avian influenza—known informally as avian flu or bird flu is a variety of influenza caused by viruses adapted to birds. The type with the greatest risk is highly pathogenic avian influenza (HPAI). Bird flu is similar to swine flu, dog flu, horse flu and human flu as an illness caused by strains of influenza viruses that have adapted to a specific host. Out of the three types of influenza viruses (A, B, and C), influenza A virus is a zoonotic infection with a natural reservoir almost entirely in birds. Avian influenza, for most purposes, refers to the influenza A virus.
Though influenza A is adapted to birds, it can also stably adapt and sustain person-to person transmission. Recent influenza research into the genes of the Spanish flu virus shows it to have genes adapted from both human and avian strains. Pigs can also be infected with human, avian, and swine influenza viruses, allow for mixtures of genes (reassortment) to create a new virus, which can cause an antigenic shift to a new influenza A virus subtype which most people have little to no immune protection.
Avian influenza strains are divided into two types based on their pathogenicity: high pathogenicity (HP) or low pathogenicity (LP). The most well-known HPAI strain, H5N1, appeared in China in 1996, and also has low pathogenic strains found in North America. Companion birds in captivity are unlikely to contract the virus and there has been no report of a companion bird with avian influenza since 2003. Pigeons do not contract or spread the virus.
Between early 2013 to early 2017, 916 lab-confirmed human cases of H7N9 were reported to the World Health Organization (WHO). On 9 January 2017, the National Health and Family Planning Commission of China reported to WHO 106 cases of H7N9 which occurred from late November through late December, including 35 deaths, 2 potential cases of human-to-human transmission, and 80 of these 106 persons stating that they have visited live poultry markets. The cases are reported from Jiangsu (52), Zhejiang (21), Anhui (14), Guangdong (14), Shanghai (2), Fujian (2) and Hunan (1). Similar sudden increases in the number of human cases of H7N9 have occurred in previous years during December and January.
Pappataci fever (also known as Phlebotomus fever and, somewhat confusingly, sandfly fever and three-day fever) is a vector-borne febrile arboviral infection caused by three serotypes of Phlebovirus. It occurs in subtropical regions of the Eastern Hemisphere. The name, pappataci fever, comes from the Italian word for sandfly, it is the union of the word "pappa" (food) and taci (silent) which distinguishes these insects from blood-feeding mosquitoes, which produce a typical noise while flying.
Feline zoonosis are the viral, bacterial, fungal, protozoan, nematode and arthropod infections that can be transmitted to humans from the domesticated cat, "Felis catus". Some of these are diseases are reemerging and newly emerging infections or infestations caused by zoonotic pathogens transmitted by cats. In some instances, the cat can display symptoms of infection (these may differ from the symptoms in humans) and sometimes the cat remains asymptomatic. There can be serious illnesses and clinical manifestations in people who become infected. This is dependent on the immune status and age of the person. Those who live in close association with cats are more prone to these infections. But those that do not keep cats as pets are also able to acquire these infections because of the transmission can be from cat feces and the parasites that leave their bodies.
People can acquire cat-associated infections through bites, scratches or other direct contact of the skin or mucous membranes with the cat. This includes 'kissing' or letting the animal lick the mouth or nose. Mucous membranes are easily infected when the pathogen is in the mouth of the cat. Pathogens can also infect people when there is contact with animal saliva, urine and other body fluids or secretions, When fecal material is unintentionally ingested, infection can occur. Feline zooinosis can be acquired by a person by inhalation of aerosols or droplets coughed up by the cat.
In the United States, forty percent of homes have at least one cat. Some contagious infections such as campylobacteriosis and salmonellosis cause visible symptoms of the disease in cats. Other infections, such as cat scratch disease and toxoplasmosis, have no visible symptoms and are carried by apparently healthy cats.
Approximately 33% of people with influenza are asymptomatic.
Symptoms of influenza can start quite suddenly one to two days after infection. Usually the first symptoms are chills or a chilly sensation, but fever is also common early in the infection, with body temperatures ranging from 38 to 39 °C (approximately 100 to 103 °F). Many people are so ill that they are confined to bed for several days, with aches and pains throughout their bodies, which are worse in their backs and legs. Symptoms of influenza may include:
- Fever and extreme coldness (chills shivering, shaking (rigor))
- Cough
- Nasal congestion
- Vomiting
- Runny nose
- Sneezing
- Body aches, especially joints and throat
- Fatigue
- Headache
- Irritated, watering eyes
- Reddened eyes, skin (especially face), mouth, throat and nose
- Petechial rash
- In children, gastrointestinal symptoms such as diarrhea and abdominal pain, (may be severe in children with influenza B)
It can be difficult to distinguish between the common cold and influenza in the early stages of these infections. Influenza is a mixture of symptoms of common cold and pneumonia, body ache, headache, and fatigue. Diarrhea is not normally a symptom of influenza in adults, although it has been seen in some human cases of the H5N1 "bird flu" and can be a symptom in children. The symptoms most reliably seen in influenza are shown in the adjacent table.
Since antiviral drugs are effective in treating influenza if given early (see treatment section, below), it can be important to identify cases early. Of the symptoms listed above, the combinations of fever with cough, sore throat and/or nasal congestion can improve diagnostic accuracy. Two decision analysis studies suggest that "during local outbreaks" of influenza, the prevalence will be over 70%, and thus patients with any of these combinations of symptoms may be treated with neuraminidase inhibitors without testing. Even in the absence of a local outbreak, treatment may be justified in the elderly during the influenza season as long as the prevalence is over 15%.
The available laboratory tests for influenza continue to improve. The United States Centers for Disease Control and Prevention (CDC) maintains an up-to-date summary of available laboratory tests. According to the CDC, rapid diagnostic tests have a sensitivity of 50–75% and specificity of 90–95% when compared with viral culture. These tests may be especially useful during the influenza season (prevalence=25%) but in the absence of a local outbreak, or peri-influenza season (prevalence=10%).
Occasionally, influenza can cause severe illness including primary viral pneumonia or secondary bacterial pneumonia. The obvious symptom is trouble breathing. In addition, if a child (or presumably an adult) seems to be getting better and then relapses with a high fever, that is a danger sign since this relapse can be bacterial pneumonia.
Influenza, commonly known as "the flu", is an infectious disease caused by an influenza virus. Symptoms can be mild to severe. The most common symptoms include: a high fever, runny nose, sore throat, muscle pains, headache, coughing, and feeling tired. These symptoms typically begin two days after exposure to the virus and most last less than a week. The cough, however, may last for more than two weeks. In children, there may be nausea and vomiting, but these are not common in adults. Nausea and vomiting occur more commonly in the unrelated infection gastroenteritis, which is sometimes inaccurately referred to as "stomach flu" or "24-hour flu". Complications of influenza may include viral pneumonia, secondary bacterial pneumonia, sinus infections, and worsening of previous health problems such as asthma or heart failure.
Three types of influenza viruses affect people, called Type A, Type B, and Type C. Usually, the virus is spread through the air from coughs or sneezes. This is believed to occur mostly over relatively short distances. It can also be spread by touching surfaces contaminated by the virus and then touching the mouth or eyes. A person may be infectious to others both before and during the time they are showing symptoms. The infection may be confirmed by testing the throat, sputum, or nose for the virus. A number of rapid tests are available; however, people may still have the infection if the results are negative. A type of polymerase chain reaction that detects the virus's RNA is more accurate.
Frequent hand washing reduces the risk of viral spread. Wearing a surgical mask is also useful. Yearly vaccinations against influenza are recommended by the World Health Organization for those at high risk. The vaccine is usually effective against three or four types of influenza. It is usually well tolerated. A vaccine made for one year may not be useful in the following year, since the virus evolves rapidly. Antiviral drugs such as the neuraminidase inhibitor oseltamivir, among others, have been used to treat influenza. Their benefits in those who are otherwise healthy do not appear to be greater than their risks. No benefit has been found in those with other health problems.
Influenza spreads around the world in a yearly outbreak, resulting in about three to five million cases of severe illness and about 250,000 to 500,000 deaths. In the Northern and Southern parts of the world, outbreaks occur mainly in winter while in areas around the equator outbreaks may occur at any time of the year. Death occurs mostly in the young, the old and those with other health problems. Larger outbreaks known as pandemics are less frequent. In the 20th century, three influenza pandemics occurred: Spanish influenza in 1918 (~50 million deaths), Asian influenza in 1957 (two million deaths), and Hong Kong influenza in 1968 (one million deaths). The World Health Organization declared an outbreak of a new type of influenza A/H1N1 to be a pandemic in June 2009. Influenza may also affect other animals, including pigs, horses and birds.