Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Hematologic manifestations related to bone marrow suppression and subsequent pancytopenia are a major source of morbidity and mortality. Additionally extramedullary hematopoiesis can result in liver and spleen dysfunction. Cranial nerve dysfunction and neurologic complications are usually associated with infantile osteopetrosis. Expansion of the skull bone leads to macrocephaly. Additionally, linear growth retardation that is not apparent at birth, delayed motor milestones and poor dentition can occur.
Malignant infantile osteopetrosis, also known as infantile autosomal recessive osteopetrosis or simply infantile osteopetrosis is a rare osteosclerosing type of skeletal dysplasia that typically presents in infancy and is characterized by a unique radiographic appearance of generalized hyperostosis - excessive growth of bone.
The generalized increase in bone density has a special predilection to involve the medullary portion with relative sparing of the cortices. Obliteration of bone marrow spaces and subsequent depression of the cellular function can result in serious hematologic complications. Optic atrophy and cranial nerve damage secondary to bony expansion can result in marked morbidity. The prognosis is extremely poor in untreated cases. Plain radiography provides the key information to the diagnosis. Clinical and radiologic correlations are also fundamental to the diagnostic process, with additional gene testing being confirmatory.
Autosomal Dominant Osteopetrosis(ADO), also known as Albers-Schonberg disease. Most do not know they have this disorder because most individuals do not show any symptoms. However, the ones that do show symptoms, they will typically have a curvature of the spin(scoliosis), and multiple bone fractures. There are two types of adult osteopetrosis based on the basis of radiographic, biochemical, and clinical features.
Many patients will have bone pains. The defects are very common and include neuropathies due to the cranial nerve entrapment, osteoarthritis, carpal tunnel syndrome. About 40% of patients will experience recurrent fractures of their bones. 10% of patients will have osteomyelitis of the mandible.
Despite this excess bone formation, people with osteopetrosis tend to have bones that are more brittle than normal. Mild osteopetrosis may cause no symptoms, and present no problems.
However, serious forms can result in...
- Stunted growth, deformity, and increased likelihood of fractures
- Patients suffer anemia, recurrent infections, and hepatosplenomegaly due to bone expansion leading to bone marrow narrowing and extramedullary hematopoiesis
- It can also result in blindness, facial paralysis, and deafness, due to the increased pressure put on the nerves by the extra bone
- Abnormal cortical bone morphology
- Abnormal form of the vertebral bodies
- Abnormality of temperature regulation
- Abnormality of the ribs
- Abnormality of vertebral epiphysis morphology
- Bone pain
- Cranial nerve paralysis
- Craniosynostosis
- Hearing impairment
- Hypocalcemia
Autosomal recessive multiple epiphyseal dysplasia (ARMED), also called epiphyseal dysplasia, multiple, 4 (EDM4), multiple epiphyseal dysplasia with clubfoot or –with bilayered patellae, is an autosomal recessive congenital disorder affecting cartilage and bone development. The disorder has relatively mild signs and symptoms, including joint pain, scoliosis, and malformations of the hands, feet, and knees.
Some affected individuals are born with an inward- and downward-turning foot (a clubfoot). An abnormality of the kneecap called a double-layered patella is also relatively common. Although some people with recessive multiple epiphyseal dysplasia have short stature as adults, most are of normal height. The incidence is unknown as many cases are not diagnosed due to mild symptoms.
The distinctive characteristics of OSMED include severe bone and joint problems and very severe hearing loss. This disorder affects the epiphyses, the parts of the bone where growth occurs. People with the condition are often shorter than average because the bones in their arms and legs are unusually short. Other skeletal signs include enlarged joints, short hands and fingers, and flat bones of the spine (vertebrae). People with the disorder often experience back and joint pain, limited joint movement, and arthritis that begins early in life. Severe high-tone hearing loss is common. Typical facial features include protruding eyes; a sunken nasal bridge; an upturned nose with a large, rounded tip; and a small lower jaw. Some affected infants are born with an opening in the roof of the mouth, which is called a cleft palate.
Most patients with APRT deficiency have repeated episodes of kidney stones that are not detected by a conventional x-ray study. However, all stones are easily detected by other medical imaging methods such as ultrasound or computerized tomography (CT) scan. A minority of patients develop symptoms of kidney failure. Kidney stones are often associated with severe loin or abdominal pain. Symptoms associated with kidney failure are largely nonspecific such as increased fatigue and weakness, poor appetite, and weight loss. Children with the disease may have similar symptoms as adults. In young children, APRT deficiency can cause reddish-brown diaper spots.
Hypohidrotic ectodermal dysplasia (also known as "anhidrotic ectodermal dysplasia", and "Christ-Siemens-Touraine syndrome") is one of about 150 types of ectodermal dysplasia in humans. Before birth, these disorders result in the abnormal development of structures including the skin, hair, nails, teeth, and sweat glands.
The frequency of this disorder is unknown, but it is very rare. Only a few families with the condition have been reported.
Most people with hypohidrotic ectodermal dysplasia have a reduced ability to sweat (hypohidrosis) because they have fewer sweat glands than normal or their sweat glands do not function properly. Sweating is a major way that the body controls its temperature; as sweat evaporates from the skin, it cools the body. An inability to sweat can lead to a dangerously high body temperature (hyperthermia) particularly in hot weather. In some cases, hyperthermia can cause life-threatening medical problems.
Affected individuals tend to have sparse scalp and body hair (hypotrichosis). The hair is often light-coloured, brittle, and slow-growing. This condition is also characterized by absent teeth (hypodontia) or teeth that are malformed. The teeth that are present are frequently small and pointed.
Hypohidrotic ectodermal dysplasia is associated with distinctive facial features including a prominent forehead, thick lips, and a flattened bridge of the nose. Additional features of this condition include thin, wrinkled, and dark-colored skin around the eyes; chronic skin problems such as eczema; and a bad-smelling discharge from the nose (ozena).
Hypohidrotic ectodermal dysplasia is the most common form of ectodermal dysplasia in humans. It is estimated to affect at least 1 in 17,000 people worldwide.
EEM syndrome exhibits a combination of prominent symptoms and features. These include: ectodermal dysplasia (systemic malformations of ectodermal tissues), ectrodactyly ("lobster claw" deformity in the hands and feet), macular dystrophy (a progressive eye disease), syndactyly (webbed fingers or toes), hypotrichosis (a type of hair-loss), and dental abnormalities (hypodontia).
Kostmann syndrome is a group of diseases that affect myelopoiesis, causing a congenital form of neutropenia (severe congenital neutropenia [SCN]), usually without other physical malformations. SCN manifests in infancy with life-threatening bacterial infections.
Most cases of SCN respond to treatment with granulocyte colony-stimulating factor (filgrastim), which increases the neutrophil count and decreases the severity and frequency of infections. Although this treatment has significantly improved survival, people with SCN are at risk of long-term complications such as hematopoietic clonal disorders (myelodysplastic syndrome, acute myeloid leukemia).
Kostmann disease (SCN3), the initial subtype recognized, was clinically described in 1956. This type has an autosomal recessive inheritance pattern, whereas the most common subtype of Kostmann syndrome, SCN1, shows autosomal dominant inheritance.
Infants with SCN have frequent infections: 50% have a significant infection within 1 month, most others by 6 months. Their etiology is usually bacterial, especially staphylococcal, and they commonly involve abscesses, both cutaneous and of internal organs, pneumonia, mastoiditis (inflammation of the mastoid process), and sepsis. All of these are life-threatening for infants.
Achondroplasia is a genetic disorder that results in dwarfism. The arms and legs are short, while the trunk is typically of normal length. Those affected have an average adult height of for males and for females. Other features include an enlarged head and prominent forehead. Intelligence is generally normal.
Achondroplasia is due to a mutation in the FGFR3 gene. In about 80% of cases this occurs as a new mutation during early development. In the other cases it is inherited from one's parents in an autosomal dominant manner. Those with two effected genes do not typically survive. Diagnosis is generally based on symptoms, but may be supported by genetic testing if uncertain.
Treatments may include support groups and growth hormone therapy. Efforts to treat or prevent complications such as obesity, hydrocephalus, obstructive sleep apnea, middle ear infections, or spinal stenosis may be required. Life expectancy of those affected is about 10 years less than average. The condition affects about 1 in 27,500 people. Rates are higher in Denmark and Latin America. The shortest known adults with the condition is Jyoti Amge at .
Hyperlysinemia is an autosomal recessive metabolic disorder characterized by an abnormal increase of lysine in the blood, but appears to be benign. It is caused by mutations in "AASS", which encodes α-aminoadipic semialdehyde synthase.
Hyperlysinemia is associated with ectopia lentis (a displacement or malposition of the eye's crystalline lens) in humans.
HIES often appears early in life with recurrent staphylococcal and candidal infections, pneumonias, and eczematoid skin.
- Autosomal dominant Hyper-IgE Syndrome caused by STAT3 defects, called Job Syndrome, have characteristic facial, dental, and skeletal abnormalities. Patients with STAT3 HIES may have either delay of or failure in shedding of primary teeth. The characteristic facial features are usually set by age 16. These include facial asymmetry, a prominent forehead, deep-set eyes, a broad nasal bridge, a wide, fleshy nasal tip, and mild prognathism. Additionally, facial skin is rough with prominent pores. Finally, some patients with STAT3 HIES have scoliosis, as well as bones that fracture easily.
- Autosomal recessive
Adenine phosphoribosyltransferase deficiency (also called APRT deficiency or 2,8 dihydroxyadenine urolithiasis) is an autosomal recessive metabolic disorder associated with a mutation in the enzyme adenine phosphoribosyltransferase.
EEM syndrome (or Ectodermal dysplasia, Ectrodactyly and Macular dystrophy syndrome) is an autosomal recessive congenital malformation disorder affecting tissues associated with the ectoderm (skin, hair, nails, teeth), and also the hands, feet and eyes.
Pycnodysostosis causes the bones to be abnormally dense (osteopetrosis); the last bones of the fingers (the distal phalanges) to be unusually short; and delays the normal closure of the connections (sutures) of the skull bones in infancy, so that the "soft spot" (fontanelle) on top of the head remains widely open.
Those with the syndrome have brittle bones which easily break, especially in the legs and feet. The jaw and collar bone (clavicle) are also particularly prone to fractures.
Other abnormalities involve the head and face, teeth, collar bones, skin, and nails. The front and back of the head are prominent. Within the open sutures of the skull, there may be many small bones (called wormian bones). The midface is less full than usual. The nose is prominent. The jaw can be small. The palate is narrow and grooved. The baby teeth are late coming in and may be lost much later than usual. The permanent teeth can also be slow to appear. The permanent teeth are commonly irregular and teeth may be missing (hypodontia). The collar bones are often underdeveloped and malformed. The skin over the back of the fingers is very wrinkled. The nails are flat and grooved.
Pycnodysostosis also causes problems that may become evident with time. Aside from the broken bones, the distal phalanges and the collar bone can undergo slow progressive deterioration. Vertebral defects may permit the spine to curve laterally resulting in scoliosis. The dental problems often require orthodontic care and cavities are common.
Hyperimmunoglobulinemia E syndrome (HIES), of which the autosomal dominant form is called Job's syndrome or Buckley syndrome, is a heterogeneous group of immune disorders. Job's is also very rare at about 300 cases currently in the literature.
Achondrogenesis, type 1B is a severe autosomal recessive skeletal disorder, invariable fatal in the perinatal period. It is characterized by extremely short limbs, a narrow chest, and a prominent, rounded abdomen. The fingers and toes are short and the feet may be rotated inward. Affected infants frequently have a soft out-pouching around the belly-button (an umbilical hernia) or near the groin (an inguinal hernia).
Achondrogenesis, type 1B is a rare genetic disorder; its incidence is unknown. Achondrogenesis, type 1B is the most severe condition in a spectrum of skeletal disorders caused by mutations in the "SLC26A2" gene. This gene provides instructions for making a protein that is essential for the normal development of cartilage and for its conversion to bone. Mutations in the "SLC26A2" gene disrupt the structure of developing cartilage, preventing bones from forming properly and resulting in the skeletal problems characteristic of achondrogenesis, type 1B.
Achondrogenesis, type 1B is inherited in an autosomal recessive pattern, which means two copies of the gene in each cell are altered. Most often, the parents of an individual with an autosomal recessive disorder are carriers of one copy of the altered gene but do not show signs and symptoms of the disorder.
Achondroplasia can be detected before birth by prenatal ultrasound. A DNA test can be performed before birth to detect homozygosity, wherein two copies of the mutant gene are inherited, a lethal condition leading to stillbirths. Clinical features include megalocephaly, short limbs, prominent forehead, thoracolumbar kyphosis and mid-face hypoplasia. Complications like dental malocclusion, hydrocephalus and repeated otitis media can be observed. The risk of death in infancy is increased due to the likelihood of compression of the spinal cord with or without upper airway obstruction.
An osteoclast (from the Greek words for "bone" (ὀστέον), and "broken" (κλαστός)) is a type of bone cell that breaks down bone tissue. This function is critical in the maintenance, repair, and remodelling of bones of the vertebral skeleton. The osteoclast disassembles and digests the composite of hydrated protein and mineral at a molecular level by secreting acid and a collagenase, a process known as "bone resorption". This process also helps regulate the level of blood calcium.
An odontoclast (/odon·to·clast/; o-don´to-klast) is an osteoclast associated with absorption of the roots of deciduous teeth.
RL syndrome is characterized by renal dysplasia, growth retardation, phocomelia or mesomelia, radiohumeral fusion (joining of radius and humerus), rib abnormalities, anomalies of the external genitalia and potter-like facies among many others.
Trichothiodystrophy (TTD) is an autosomal recessive inherited disorder characterised by brittle hair and intellectual impairment. The word breaks down into "tricho" – "hair", "thio" – "sulphur", and "dystrophy" – "wasting away" or literally "bad nourishment". TTD is associated with a range of symptoms connected with organs of the ectoderm and neuroectoderm. TTD may be subclassified into four syndromes: Approximately half of all patients with trichothiodystrophy have photosensitivity, which divides the classification into syndromes with or without photosensitivity; BIDS and PBIDS, and IBIDS and PIBIDS. Modern covering usage is TTD-P (photosensitive), and TTD.