Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Common symptoms of the disease are weakness and atrophy in the distal muscles of the lower limbs which progresses to the hands and arms, then to the trunk, neck and face. Respiratory impairment often follows.
Chorea-acanthocytosis (ChAc, also called Choreoacanthocytosis), is a rare hereditary disease caused by a mutation of the gene that directs structural proteins in red blood cells. It belongs to a group of four diseases characterized under the name Neuroacanthocytosis. When a patient's blood is viewed under a microscope, some of the red blood cells appear thorny. These thorny cells are called acanthocytes.
Other effects of the disease may include epilepsy, behaviour changes, muscle degeneration, and neuronal degradation similar to Huntington's Disease. The average age of onset of symptoms is 35 years. The disease is incurable and inevitably leads to premature death.
Some more information about Chorea-acanthocytosis is that it is a very complex autosomal recessive adult-onset neurodegenerative disorder. It often shows itself as a mixed movement disorder, in which chorea, tics, dystonia and even parkinsonism may appear as a symptom.
This disease is also characterized by the presence of a few different movement disorders including chorea, dystonia etc.
Chorea-acanthocytosis is considered an autosomal recessive disorder, although a few cases with autosomal dominant inheritance have been noted.
Males
In males the symptoms of Danon Disease are more severe. Features of Danon Disease in males are:
- An early age of onset of muscle weakness and heart disease (onset in childhood or adolescence)
- Some learning problems or intellectual disability can be present
- Muscle weakness can be severe and can affect endurance and the ability to walk
- Heart disease (cardiomyopathy) can be severe and can lead to a need for medications. It usually progress to heart failure, commonly complicated by atrial fibrillation and embolic strokes with severe neurological disability, leading to death unless heart transplant is performed.
- Cardiac conduction abnormalities can occur. Wolff-Parkinson-White syndrome is a common conduction pattern in Danon disease.
- Symptoms are usually gradually progressive
- Some individuals may have visual disturbances, and/or retinal pigment abnormalities
- Danon Disease is rare and unfamiliar to most physicians. It can be mistaken for other forms of heart disease and/or muscular dystrophies, including Pompe disease.
Females
In females the symptoms of Danon Disease are less severe. Common symptoms of Danon Disease in females are:
- A later age of onset of symptoms. Many females will not have obvious symptoms until late adolescence or even adulthood.
- Learning problems and intellectual disability are usually ABSENT
- Muscle weakness is often absent or subtle. Some females will tire easily with exercise
- Cardiomyopathy) is often absent in childhood. Some women will develop this in adulthood. Cardiomyopathy can be associated with atrial fibrillation and embolic strokes.
- Cardiac conduction abnormalities can occur. Wolff-Parkinson-White syndrome is a common conduction pattern in Danon disease.
- Symptoms in females progress more slowly than in males.
- Some females may have visual disturbances, and/or retinal pigment abnormalities
- Danon Disease is rare and unfamiliar to most physicians. The milder and more subtle symptoms in females can make it more difficult to diagnose females with Danon Disease
Infants with Krabbe disease are normal at birth. Symptoms begin between the ages of 3 and 6 months with irritability, fevers, limb stiffness, seizures, feeding difficulties, vomiting, and slowing of mental and motor development. In the first stages of the disease, doctors often mistake the symptoms for those of cerebral palsy. Other symptoms include muscle weakness, spasticity, deafness, optic atrophy, optic nerve enlargement, blindness, paralysis, and difficulty when swallowing. Prolonged weight loss may also occur. Juvenile- and adult-onset cases of Krabbe disease also occur, which have similar symptoms but slower progression.
Giant axonal neuropathy usually appears in infancy or early childhood, and is progressive. Early signs of the disorder often present in the peripheral nervous system, causing individuals with this disorder to have problems walking. Later, normal sensation, coordination, strength, and reflexes become affected. Hearing or vision problems may also occur. Abnormally kinky hair is characteristic of giant axonal neuropathy, appearing in almost all cases. As the disorder progresses, central nervous system becomes involved, which may cause a gradual decline in mental function, loss of control of body movement, and seizures.
Onset : Early childhood
Progression: Chronic progressive
Clinical: Cerebellar ataxia plus syndrome / Optic Atrophy Plus Syndrome
Ocular: Optic atrophy, nystagmus, scotoma, and bilateral retrobulbar neuritis.
Other: Mental retardation, myoclonic epilepsy, spasticity, and posterior column sensory loss. Tremor in some cases.
Musculoskeletal
Contractures, lower limbs, Achilles tendon contractures, Hamstring contractures, Adductor longus contractures
Systemic
Hypogonadotrophic hypogonadism.
Kufor–Rakeb syndrome is an autosomal recessive disorder of juvenile onset also known as Parkinson disease-9 (PARK9).
Symptoms include supranuclear gaze palsy, spasticity, and dementia.
It can be associated with "ATP13A2". It is named after Kufr Rakeb in Irbid, Jordan.
Some specific symptoms vary from one type of leukodystrophy to the next but the vast majority of symptoms are shared as the causes for the disease generally have the same effects. Symptoms are dependent on the age of onset, which is predominantly in infancy and early childhood, although the exact time of onset may be difficult to determine. Hyperirritability and hypersensitivity to the environment are common, as well as some tell-tale physical signs including muscle rigidity and a backwards-bent head. Botox therapy is often used to treat patients with spasticity. Juvenile and adult onsets display similar symptoms including a decrease or loss in hearing and vision. While children do experience optic and auditory degeneration, the course of the disease is usually too rapid, causing death relatively quickly, whereas adults may live with these conditions for many years. In children, spastic activity often precedes progressive ataxia and rapid cognitive deterioration which has been described as mental retardation. Epilepsy is commonplace for patients of all ages. More progressed patients show weakness in deglutition, leading to spastic coughing fits due to inhaled saliva. Classic symptomatic progression of juvenile x-linked adrenoleukodystrophy is shown in the 1992 film, "Lorenzo's Oil".
Course and timetable are dependent on the age of onset with infants showing a lifespan of 2–8 years, juveniles 2–10 years and adults typically 10+ years. Adults typically see an extended period of stability followed by a decline to a vegetative state and death. While treatments do exist, most are in the experimental phase and can only promise a halt in the progression of symptoms, although some gene therapies have shown some symptomatic improvement. The debilitating course of the disease has led to numerous philosophical and ethical arguments over experimental clinical trials, patients’ rights and physician-assisted suicide.
Tay–Sachs disease is typically first noticed in infants around 6 months old displaying an abnormally strong response to sudden noises or other stimulus, known as the "startle response," because they are startled. There may also be listlessness or muscle stiffness (hypertonia). The disease is classified into several forms, which are differentiated based on the onset age of neurological symptoms.
- Infantile Tay–Sachs disease. Infants with Tay–Sachs disease appear to develop normally for the first six months after birth. Then, as neurons become distended with gangliosides, a relentless deterioration of mental and physical abilities begins. The child may become blind, deaf, unable to swallow, atrophied, and paralytic. Death usually occurs before the age of four.
- Juvenile Tay–Sachs disease. Juvenile Tay–Sachs disease is rarer than other forms of Tay–Sachs, and usually is initially seen in children between two and ten years old. People with Tay–Sachs disease develop cognitive and motor skill deterioration, dysarthria, dysphagia, ataxia, and spasticity. Death usually occurs between the age of five to fifteen years.
- Adult/Late-Onset Tay–Sachs disease. A rare form of this disease, known as Adult-Onset or Late-Onset Tay–Sachs disease, usually has its first symptoms during the 30s or 40s. In contrast to the other forms, late-onset Tay–Sachs disease is usually not fatal as the effects can stop progressing. It is frequently misdiagnosed. It is characterized by unsteadiness of gait and progressive neurological deterioration. Symptoms of late-onset Tay–Sachs – which typically begin to be seen in adolescence or early adulthood – include speech and swallowing difficulties, unsteadiness of gait, spasticity, cognitive decline, and psychiatric illness, particularly a schizophrenia-like psychosis. People with late-onset Tay–Sachs may become full-time wheelchair users in adulthood.
Until the 1970s and 1980s, when the disease's molecular genetics became known, the juvenile and adult forms of the disease were not always recognized as variants of Tay–Sachs disease. Post-infantile Tay–Sachs was often misdiagnosed as another neurological disorder, such as Friedreich's ataxia.
This form differs from the infantile principally in the relative lack of cardiac involvement. The onset is more insidious and has a slower progression. Cardiac involvement may occur but is milder than in the infantile form. Skeletal involvement is more prominent with a predilection for the lower limbs.
Late onset features include impaired cough, recurrent chest infections, hypotonia, progressive muscle weakness, delayed motor milestones, difficulty swallowing or chewing and reduced vital capacity.
Prognosis depends on the age of onset on symptoms with a better prognosis being associated with later onset disease.
There are multiple symptoms that can help this disease to be diagnosed, this disease is marked by the presence of acanthocytes in blood (these acanthocytes can sometimes be absent or even make a late appearance in the course of the disease.) and neurodegeneration causing a choreiform movement disorder.
Another one of them would be that this disease should be considered in patients who have elevated levels of acanthocytes in a peripheral blood film.
The serum creatine kinase is often elevated in the body of the people who are affected by this disease.
People afflicted by this disease also experience a loss of neurons. Loss of neurons is a hallmark of neurodegenerative diseases. Due to the generally non-regenerative nature of neuronal cells in the adult central nervous system, this results in an irreversible and fatal process of neurodegeneration. There is also the presence of several movement related disorders including chorea, dystonia and bradykinesia, one of the more incapacitating ones includes Truncal spasms.
The 'core' neuroacanthocytosis syndromes are chorea acanthocytosis and McLeod syndrome. Acanthocytes are nearly always present in these conditions and they share common clinical features. Some of these features are also seen in the other neurological syndromes associated with neuroacanthocytosis.
A common feature of the core syndromes is chorea: involuntary dance-like movements. In neuroacanthocytosis, this is particularly prominent in the face and mouth which can cause difficulties with speech and eating. These movements are usually abrupt and irregular and present during both rest and sleep.
Individuals with neuroacanthocytosis also often suffer from parkinsonism, the uncontrolled slowness of movements, and dystonia, abnormal body postures. Many affected individuals also have cognitive (intellectual) impairment and psychiatric symptoms such as anxiety, paranoia, depression, obsessive behavior, and pronounced emotional instability. Seizures may also be a symptom of neuroacanthocytosis.
Onset differs between individual neuroacanthocytosis syndromes but is usually between ages 20 and 40. Affected individuals usually live for 10–20 years after onset.
Symptoms typically present in the 3rd or 4th decade of life, but have been seen as early as the age of 14. It presents with torsion dystonia, particularly when presenting at a younger age, which then progresses to parkinsonism with or without ongoing dystonia. Often the two symptoms coexist.The parkinsonian features of x-linked dystonia parkinsonism include festinating gait, bradykinesia, blepharospasm, and postural instability. It often lacks a resting tremor, helping to differentiate it from Parkinson's disease.
Patients that present with CARASIL usually experience neurological abnormalities by their 20s or 30s and strokes upon reaching their 40s. About 50% of affected patients present with stroke, and most strokes experienced by patients are lacunar infarcts. Many patients experience some form of mood changes, personality disorders, and or dementia. Alopecia, also known as hair loss, usually presents beginning in adolescence. The presence of spondylosis deformans and the onset of low back pain via the breakdown of intervertebral discs is also usually present. CARASIL is a degenerative disease, and most patients live only 10 years past symptom onset.
Danon disease (or glycogen storage disease Type IIb) is a metabolic disorder.Danon disease is an X-linked lysosomal and glycogen storage disorder associated with hypertrophic cardiomyopathy, skeletal muscle weakness, and intellectual disability.
The infantile form usually comes to medical attention within the first few months of life. The usual presenting features are cardiomegaly (92%), hypotonia (88%), cardiomyopathy (88%), respiratory distress (78%), muscle weakness (63%), feeding difficulties (57%) and failure to thrive (50%).
The main clinical findings include floppy baby appearance, delayed motor milestones and feeding difficulties. Moderate hepatomegaly may be present. Facial features include macroglossia, wide open mouth, wide open eyes, nasal flaring (due to respiratory distress), and poor facial muscle tone. Cardiopulmonary involvement is manifested by increased respiratory rate, use of accessory muscles for respiration, recurrent chest infections, decreased air entry in the left lower zone (due to cardiomegaly), arrhythmias and evidence of heart failure.
Median age at death in untreated cases is 8.7 months and is usually due to cardiorespiratory failure.
Symptoms begin in infancy and include:
- hypotonia
- areflexia
- amyotrophy
- variable degrees of dysgenesis of the corpus callosum
- mild to severe intellectual and developmental delay
- psychiatric problems including paranoid delusions, depression, hallucinations and autistic-like behavior
There are three major types of inheritance for this disease: Autosomal dominant, autosomal recessive and de novo.
- The most severe form is autosomal recessive and it also has the earliest onset. It usually involves all three muscle tissues and leads to cardiac and respiratory failure as well as intestinal obstruction.
- Autosomal Dominant inheritance shows a later onset and slower progression. It usually involves only one or two of the muscle tissues.
- De novo diseases occur when a new mutation arises in the person that was not inherited through either parent. This form has a wide range of symptoms and varies depending on the mutation made.
Behr syndrome is characterized by the association of early-onset optic atrophy with spinocerebellar degeneration resulting in ataxia, pyramidal signs, peripheral neuropathy and developmental delay.
Although it is an autosomal recessive disorder, heterozygotes may still manifest much attenuated symptoms. Autosomal dominant inheritance also being reported in a family. Recently a variant of OPA1 mutation with phenotypic presentation like Behr syndrome is also described. Some reported cases have been found to carry mutations in the OPA1, OPA3 or C12ORF65 genes which are known causes of pure optic atrophy or optic atrophy complicated by movement disorder.
The signs/symptoms of this condition are consistent with the following:
- Intellectual disability,
- Muscular hypotonia
- Encephalitis
- Seizures
- Aphasia
Type 1 usually begins somewhere in the first three to 18 months of age and in considered the most severe of the three types. Symptoms include:
- Coarse facial features
- Enlarged liver, spleen, and/or heart
- Intellectual disability
- Seizures
- Abnormal bone formation of many bones
- Progressive deterioration of brain and spinal cord
- Increased or decreased perspiration
Patients have no vascular lesions, but have rapid psychomotor regression, severe and rapidly progressing neurologic signs, elevated sodium and chloride excretion in the sweat, and fatal outcome before the sixth year.
Segawa Syndrome (SS) also known as Dopamine-responsive dystonia (DRD), Segawa's disease, Segawa's dystonia and hereditary progressive dystonia with diurnal fluctuation, is a genetic movement disorder which usually manifests itself during early childhood at around ages 5–8 years (variable start age).
Characteristic symptoms are increased muscle tone (dystonia, such as clubfoot) and Parkinsonian features, typically absent in the morning or after rest but worsening during the day and with exertion. Children with SS are often misdiagnosed as having cerebral palsy. The disorder responds well to treatment with levodopa.
2-hydroxyglutaric aciduria is an organic aciduria, and because of the stereoisomeric property of 2-hydroxyglutarate different variants of this disorder are distinguished:
The disease typically starts in one limb, typically one leg. Progressive dystonia results in clubfoot and tiptoe walking. The symptoms can spread to all four limbs around age 18, after which progression slows and eventually symptoms reach a plateau. There can be regression in developmental milestones (both motor and mental skills) and failure to thrive in the absence of treatment.
In addition, SS is typically characterized by signs of parkinsonism that may be relatively subtle. Such signs may include slowness of movement (bradykinesia), tremors, stiffness and resistance to movement (rigidity), balance difficulties, and postural instability. Approximately 25 percent also have abnormally exaggerated reflex responses (hyperreflexia), particularly in the legs. These symptoms can result in a presentation that is similar in appearance to that of Parkinson's Disease.
Many patients experience improvement with sleep, are relatively free of symptoms in the morning, and develop increasingly severe symptoms as the day progresses (i.e., diurnal fluctuation). Accordingly, this disorder has sometimes been referred to as "progressive hereditary dystonia with diurnal fluctuations." Yet some SS patients do not experience such diurnal fluctuations, causing many researchers to prefer other disease terms.
- Other symptoms - footwear
- excessive wear at toes, but little wear on heels, thus replacement of shoes every college term/semester.
- Other symptoms - handwriting
- near normal handwriting at infants/kindergarten (ages 3–5 school) years.
- poor handwriting at pre-teens (ages 8–11 school) years.
- very poor (worse) handwriting during teen (qv GCSE/A level-public exams) years.
- bad handwriting (worsening) during post-teen (qv university exams) years.
- very bad handwriting (still worsening) during adult (qv post-graduate exams) years.
- worsening pattern of sloppy handwriting best observed by school teachers via termly reports.
- child sufferer displays unhappy childhood facial expressions (depression.?)
An inherited disorder associated with the deposition of a steroid known as cholestanol in the brain and other tissues and with elevated levels of cholesterol in plasma but with normal total cholesterol level; it is characterized by progressive cerebellar ataxia beginning after puberty and by juvenile cataracts, juvenile or infantile onset chronic diarrhea, childhood neurological deficit, and tendineous or tuberous xanthomas.