Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Spinocerebellar ataxia (SCA) is one of a group of genetic disorders characterized by slowly progressive incoordination of gait and is often associated with poor coordination of hands, speech, and eye movements. A review of different clinical features among SCA subtypes was recently published describing the frequency of non-cerebellar features, like parkinsonism, chorea, pyramidalism, cognitive impairment, peripheral neuropathy, seizures, among others. As with other forms of ataxia, SCA frequently results in atrophy of the cerebellum, loss of fine coordination of muscle movements leading to unsteady and clumsy motion, and other symptoms.
The symptoms of an ataxia vary with the specific type and with the individual patient. In general, a person with ataxia retains full mental capacity but progressively loses physical control.
SCA6 is typified by progressive and permanent cerebellar dysfunction. These cerebellar signs include ataxia and dysarthria, likely caused by cerebellar atrophy. Prior to diagnosis and the onset of major symptoms, patients often report a feeling of "wooziness" and momentary imbalance when turning corners or making rapid movements. The age at which symptoms first occur varies widely, from age 19 to 71, but is typically between 43 and 52. Other major signs of SCA6 are the loss of vibratory and proprioceptive sensation and nystagmus.
While most patients present with these severe progressive symptoms, others, sometimes within the same family, display episodic non-progressive symptoms more similar to episodic ataxia. Still others present with symptoms common to both SCA6 and familial hemiplegic migraine.
Symptoms typically begin sometime between the ages of 5 to 15 years, but in Late Onset FA may occur in the 20s or 30s. Symptoms include any combination, but not necessarily all, of the following:
- Muscle weakness in the arms and legs
- Loss of coordination
- Vision impairment
- Hearing impairment
- Slurred speech
- Curvature of the spine (scoliosis)
- High plantar arches (pes cavus deformity of the foot)
- Diabetes (about 20% of people with Friedreich's ataxia develop carbohydrate intolerance and 10% develop diabetes mellitus)
- Heart disorders (e.g., atrial fibrillation, and resultant tachycardia (fast heart rate) and hypertrophic cardiomyopathy)
It presents before 22 years of age with progressive staggering or stumbling gait and frequent falling. Lower extremities are more severely involved. The symptoms are slow and progressive. Long-term observation shows that many patients reach a plateau in symptoms in the patient's early adulthood. On average, after 10–15 years with the disease, patients are usually wheelchair bound and require assistance with all activities of daily living.
The following physical signs may be detected on physical examination:
- Cerebellar: nystagmus, fast saccadic eye movements, truncal ataxia, dysarthria, dysmetria.
- Lower motor neuron lesion: absent deep tendon reflexes.
- Pyramidal: extensor plantar responses, and distal weakness are commonly found.
- Dorsal column: Loss of vibratory and proprioceptive sensation occurs.
- Cardiac involvement occurs in 91% of patients, including cardiomegaly (up to dilated cardiomyopathy), symmetrical hypertrophy, heart murmurs, and conduction defects. Median age of death is 35 years, while females have better prognosis with a 20-year survival of 100% as compared to 63% in men.
20% of cases are found in association with diabetes mellitus.
Onset occurs in infancy or early childhood, usually before 3 years of age. Progression is slow until the teenage years at which point it may accelerate, resulting in severe disability.
Symptoms are usually more severe and rapidly progressive than in the other more common Charcot–Marie–Tooth diseases. Some patients may never walk and solely use wheelchairs by the end of their first decade, while others may need only a cane (walking stick) or similar support through life.
Dejerine–Sottas disease is characterized by moderate to severe lower and upper extremity weakness and loss of sensation, which occur mainly in the lower legs, forearms, feet and hands. Loss of muscle mass and reduced muscle tone can occur as the disease progresses. Other symptoms may include pain in the extremities, curvature of the spine, clawed hands, foot deformities, ataxia, peripheral areflexia, and slow acquisition of motor skills in childhood. Symptoms that are less common can include limitation of eye movements, other eye problems such as nystagmus or anisocoria, or mild hearing loss.
Symptoms typically are onset in the adult years, although, childhood cases have also been observed. Common symptoms include a loss of coordination which is often seen in walking, and slurred speech. ADCA primarily affects the cerebellum, as well as, the spinal cord. Some signs and symptoms are:
Spinocerebellar ataxia (SCA), also known as spinocerebellar atrophy or spinocerebellar degeneration, is a progressive, degenerative, genetic disease with multiple types, each of which could be considered a disease in its own right. An estimated 150,000 people in the United States have a diagnosis of spinocerebellar ataxia at any given time. SCA is hereditary, progressive, degenerative, and often fatal. There is no known effective treatment or cure. SCA can affect anyone of any age. The disease is caused by either a recessive or dominant gene. In many cases people are not aware that they carry a relevant gene until they have children who begin to show signs of having the disorder.
Symptoms of MJD are memory deficits, spasticity, difficulty with speech and swallowing, weakness in arms and legs, clumsiness, frequent urination and involuntary eye movements. Symptoms can begin in early adolescence and they get worse over time. Eventually, MJD leads to paralysis; however, intellectual functions usually remain the same.
BVVL is marked by a number of cranial nerve palsies, including those of the motor components involving the 7th and 9th-12th cranial nerves, spinal motor nerves, and upper motor neurons. Major features of BVVL include facial and neck weakness, fasciculation of the tongue, and neurological disorders from the cranial nerves. The neurological manifestations develop insidiously: they usually begin with sensorineural deafness, progress inexorably to paralysis, and often culminate in respiratory failure. Most mortality in patients has been from either respiratory infections or respiratory muscle paralysis. Pathological descriptions of BVVL include injury and depletion of 3rd-7th cranial nerves, loss of the spinal anterior horn cells, degeneration of Purkinje cells, as well as degeneration of the spinocerebellar and pyramidal tracts. The first symptoms in nearly all cases of BVVL is progressive vision loss and deafness, and the first initial symptoms are seen anywhere from one to three years.
Most cases of deafness are followed by a latent period that can extend anywhere from weeks to years, and this time is usually marked by cranial nerve degeneration. Neurological symptoms of BVVL include optic atrophy, cerebellar ataxia, retinitis pigmentosa, epilepsy and autonomic dysfunction. Non-neurological symptoms can include diabetes, auditory hallucinations, respiratory difficulties, color blindness, and hypertension.
OPCA is characterized by progressive cerebellar ataxia, leading to clumsiness in body movements, veering from midline when walking, wide-based stance, and falls without signs of paralysis or weakness. Clinical presentation can vary greatly between patients, but mostly affects speech, balance and walking. Other possible neurological problems include spasmodic dysphonia, hypertonia, hyperreflexia, rigidity, dysarthria, dysphagia and neck dystonic posture.
Some early signs of HIBMs includes:
- Difficulty walking on heels, and difficulty running;
- Weak index finger;
- Frequent loss of balance.
- On muscle biopsy, the typical finding includes inclusion bodies, rimmed vacuoles and accumulation of aberrant proteins similar to those found in senile plaques of Alzheimer's disease (amyloid beta, hyperphosphorylated tau, amongst others)
Spinocerebellar ataxia type 6 (SCA6) is a rare, late-onset, autosomal dominant disorder, which, like other types of SCA, is characterized by dysarthria, oculomotor disorders, peripheral neuropathy, and ataxia of the gait, stance, and limbs due to cerebellar dysfunction. Unlike other types, SCA 6 is not fatal. This cerebellar function is permanent and progressive, differentiating it from episodic ataxia type 2 (EA2) where said dysfunction is episodic. In some SCA6 families, some members show these classic signs of SCA6 while others show signs more similar to EA2, suggesting that there is some phenotypic overlap between the two disorders. SCA6 is caused by mutations in CACNA1A, a gene encoding a calcium channel α subunit. These mutations tend to be trinucleotide repeats of CAG, leading to the production of mutant proteins containing stretches of 20 or more consecutive glutamine residues; these proteins have an increased tendency to form intracellular agglomerations. Unlike many other polyglutamine expansion disorders expansion length is not a determining factor for the age that symptoms present.
Onset : Early childhood
Progression: Chronic progressive
Clinical: Cerebellar ataxia plus syndrome / Optic Atrophy Plus Syndrome
Ocular: Optic atrophy, nystagmus, scotoma, and bilateral retrobulbar neuritis.
Other: Mental retardation, myoclonic epilepsy, spasticity, and posterior column sensory loss. Tremor in some cases.
Musculoskeletal
Contractures, lower limbs, Achilles tendon contractures, Hamstring contractures, Adductor longus contractures
Systemic
Hypogonadotrophic hypogonadism.
Autosomal dominant cerebellar ataxia (ADCA) is a form of spinocerebellar ataxia inherited in an autosomal dominant manner. ADCA is a genetically inherited condition that causes deterioration of the nervous system leading to disorder and a decrease or loss of function to regions of the body.
Degeneration occurs at the cellular level and in certain subtypes results in cellular death. Cellular death or dysfunction causes a break or faulty signal in the line of communication from the central nervous system to target muscles in the body. When there is impaired communication or a lack of communication entirely, the muscles in the body do not function correctly. Muscle control complications can be observed in multiple balance, speech, and motor or movement impairment symptoms. ADCA is divided into three types and further subdivided into subtypes known as SCAs (spinocerebellar ataxias).
Friedreich's ataxia is an autosomal recessive inherited disease that causes progressive damage to the nervous system. It manifests in initial symptoms of poor coordination such as gait disturbance; it can also lead to scoliosis, heart disease and diabetes, but does not affect cognitive function. The disease is progressive, and ultimately a wheelchair is required for mobility. Its incidence in the general population is roughly 1 in 50,000.
The particular genetic mutation (expansion of an intronic GAA triplet repeat in the FXN gene) leads to reduced expression of the mitochondrial protein frataxin. Over time this deficiency causes the aforementioned damage, as well as frequent fatigue due to effects on cellular metabolism.
The ataxia of Friedreich's ataxia results from the degeneration of nervous tissue in the spinal cord, in particular sensory neurons essential (through connections with the cerebellum) for directing muscle movement of the arms and legs. The spinal cord becomes thinner and nerve cells lose some of their myelin sheath (the insulating covering on some nerve cells that helps conduct nerve impulses).
The condition is named after the German physician Nikolaus Friedreich, who first described it in the 1860s.
Hereditary inclusion body myopathies (HIBM) are a heterogeneous group of very rare genetic disorders which have different symptoms. Generally, they are neuromuscular disorders characterized by muscle weakness developing in young adults. Hereditary inclusion body myopathies comprise both autosomal recessive and autosomal dominant muscle disorders that have a variable expression (phenotype) in individuals, but all share similar structural features in the muscles.
HIBMs are a group of muscle wasting disorders, which are uncommon in the general world population. One autosomal recessive form of HIBM is known as IBM2 or GNE myopathy, which is a common genetic disorder amongst people of Iranian Jewish descent. IBM2 has also been identified in other minorities throughout the world, including people of Asian (Japanese and others), European, and South American origin, as well as Muslim people in the Middle Eastern, Palestinian, and Iranian origin. In Japan and many East Asian countries, this disorder is known as Distal Myopathy with Rimmed Vacuoles (DMRV).
IBM2 causes progressive muscle weakness and wasting. Muscle wasting usually starts around the age of 20 – 30 years, although young onset at 17 and old onset at 52 has been recorded. As such, it affects the most productive times of our lives. It can progress to marked disability within 10 – 15 years, confining many people with IBM2 to a wheelchair. The weakness and severity can vary from person to person. In some, weakness in the legs is noticed first. In few others, the hands are weakened more rapidly than the legs. Weakness is progressive, which means the muscle becomes weaker over time. IBM2 does not seem to affect the brain, internal organs or sensation. The quadriceps are relatively spared, and remain strong until the late stages of disease, which is the reason IBM2 is often referred to as Quadriceps Sparing Myopathy (QSM).
Most cases of autosomal recessive cerebellar ataxia are early onset, usually around the age of 20. People with this type of ataxia share many characteristic symptoms including:
- frequent falls due to poor balance
- imprecise hand coordination
- postural or kinetic tremor of extremities or trunk
- dysarthria
- dysphasia
- vertigo
- diplopia
- lower extremity tendon reflexes
- dysmetria
- minor abnormalities in ocular saccades
- attention defects
- impaired verbal working memory and visuospatial skills
- Normal life expectancy
Autosomal recessive ataxias are generally associated with a loss of proprioception and vibration sense. Arreflexia is more common in autosomal recessive ataxia than autosomal dominant ataxias. Also, they tend to have more involvement outside of the nervous system. Mutations in subunit of the mitochondrial DNA polymerase (POLG) have been found to be a potential cause of autosomal recessive cerebellar ataxia.
Behr syndrome is characterized by the association of early-onset optic atrophy with spinocerebellar degeneration resulting in ataxia, pyramidal signs, peripheral neuropathy and developmental delay.
Although it is an autosomal recessive disorder, heterozygotes may still manifest much attenuated symptoms. Autosomal dominant inheritance also being reported in a family. Recently a variant of OPA1 mutation with phenotypic presentation like Behr syndrome is also described. Some reported cases have been found to carry mutations in the OPA1, OPA3 or C12ORF65 genes which are known causes of pure optic atrophy or optic atrophy complicated by movement disorder.
There are five sub-types of MJD that are characterized by the age of onset and range of symptoms.
The sub-types illustrate a wide variety of symptoms that patients can experience. However, assigning individuals to a specific sub-type of the disease is of limited clinical significance.
- Type I is distinguished by arrival between the ages of 10 and 30 and represents approximately 13% of individuals. It usually has fast development and severe rigidity and dystonia.
- Type II is the most common sub-type (approximately 57% of individuals with MJD ) and typically begins between 20 and 50 years of age . It has an intermediate progression and causes symptoms that include spasticity, exaggerated reflex responses and spastic gait, ataxia and upper motor neuron signs.
- Type III MJD has a slow progression. Patients typically have an onset between the ages of 40 and 70 and represent approximately 30% of MJD patients. Symptoms include muscle twitching, tingling, cramps, unpleasant sensations such as numbness, pain in the feet, hands and limbs and muscle atrophy. Nearly all patients experience a decline in their vision such as blurred vision, double vision, inability to control eye movements, and loss of capability to distinguish color. Some patients also experience Parkinsonian symptoms.
- Type IV is distinguished by Parkinsonian symptoms that respond particularly well to levodopa treatment.
- Type V appears to resemble Hereditary Spastic Paraplegia; however, more research is needed to conclude the relationship between Type V MJD and hereditary spastic paraplegia.
Brown-Vialetto-Van-Laere syndrome (BVVL), sometimes known as Brown's Syndrome, is a rare degenerative disorder often initially characterized by progressive sensorineural deafness.
The syndrome most often affects children, adolescents, and young adults. As knowledge of BVVL grows some adult patients have now been diagnosed. There is no known cure, however with prompt treatment the prognosis may be positive with some patients stabilizing and even minor improvements noted in certain cases.
Dejerine–Sottas disease, also known as Dejerine–Sottas syndrome, Dejerine–Sottas neuropathy, progressive hypertrophic interstitial polyneuropathy of childhood and onion bulb neuropathy (and, "hereditary motor and sensory polyneuropathy type III" and "Charcot–Marie–Tooth disease type 3"), is a hereditary neurological disorder characterised by damage to the peripheral nerves and resulting progressive muscle wasting. The condition is caused by mutations in a various genes and currently has no known cure.
The disorder is named for Joseph Jules Dejerine and Jules Sottas, French neurologists who first described it.
Autosomal recessive cerebellar ataxia type 1 (ARCA1) is a condition characterized by progressive problems with movement. Signs and symptoms of the disorder first appear in early to mid-adulthood. People with this condition initially experience impaired speech (dysarthria), problems with coordination and balance (ataxia), or both. They may also have difficulty with movements that involve judging distance or scale (dysmetria). Other features of ARCA1 include abnormal eye movements (nystagmus) and problems following the movements of objects with their eyes. The movement problems are slowly progressive, often resulting in the need for a cane, walker, or wheelchair.
Onset of symptoms usually occur in early adulthood and is characterized by intention tremor, progressive ataxia, convulsions, and myoclonic epileptic jerks.
Tremors usually affect one extremity, primarily the upper limb, and eventually involve the entire voluntary motor system. Overall, the lower extremity is usually disturbed less often than the upper extremity.
Additional features of the syndrome include: an unsteady gait, seizures, muscular hypotonia, reduced muscular coordination, asthenia, adiadochokinesia and errors with estimating range, direction, and force of voluntary movements. Mental deterioration can occur, however it is rare.
Symptoms start with slowly developing dysarthria (difficulty speaking) and cerebellar ataxia (unsteadiness) and then the progressive dementia becomes more evident. Loss of memory can be the first symptom of GSS. Extrapyramidal and pyramidal symptoms and signs may occur and the disease may mimic spinocerebellar ataxias in the beginning stages. Myoclonus (spasmodic muscle contraction) is less frequently seen than in Creutzfeldt–Jakob disease. Many patients also exhibit nystagmus (involuntary movement of the eyes), visual disturbances, and even blindness or deafness. The neuropathological findings of GSS include widespread deposition of amyloid plaques composed of abnormally folded prion protein.
Olivopontocerebellar atrophy (OPCA) is the degeneration of neurons in specific areas of the brain – the cerebellum, pons, and inferior olives. OPCA is present in several neurodegenerative syndromes, including inherited and non-inherited forms of ataxia (such as the hereditary spinocerebellar ataxia known as Machado–Joseph disease) and multiple system atrophy (MSA), with which it is primarily associated.
OPCA may also be found in the brains of individuals with prion disorders and inherited metabolic diseases. The characteristic areas of brain damage that indicate OPCA can be seen by imaging the brain using CT scans or MRI studies.
The term was originally coined by Joseph Jules Dejerine and André Thomas.
ARSACS is usually diagnosed in early childhood, approximately 12–24 months of age when a child begins to take their first steps. At this time it manifests as a lack of coordination and balance resulting in frequent falls. Some of the signs and symptoms include:
- Stiffness of the legs
- Appendicular and trunk ataxia
- Hollow foot and hand deformities
- Ataxic dysarthria
- Distal muscle wasting
- Horizontal gaze nystagmus
- Spasticity