Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Signs and symptoms include:
- syndromic facies
- hearing loss
- facial paralysis
It causes facial abnormalities, skeletal malformation and occasionally neural tube defects; the skeletal disfigurements resolve to a degree in the course of development.
Mutations in different parts of the gene may lead to deafness or Stickler syndrome type III (eye problems: myopia, retinal detachment and skeletal abnormalities).
Infants and children: Infants that are born with Weissenbacher-Zweymüller syndrome usually have short bones in their arms and legs. The thigh and upper arm bones are wider than usual resulting in a dumbbell-shape while the bones of the vertebrae may be abnormal. Typical abnormal facial features can be wide-set protruding eyes (hypertelorism), a small and upturned nose with a flat bridge, small jaw (micrognathia) and a cleft palate. Some infants have high-frequency hearing loss. Infants may also exhibit a psychomotor delay. After the period of growth deficiency the individual makes improvements in bone growth leading to a normal physical development around age 5 or 6.
Adults: Many with Weissenbacher-Zweymüller syndrome have a catch-up growth phase causing the adults to not be unusually short. Many adults still will have hearing loss and typical abnormal facial features of Weissenbacher-Zweymüller syndrome.
Not all of the DOOR symptoms are consistently present. They can vary in severity, and additional features can be noted in individuals affected by DOOR syndrome.
Some of these additional features are:
- Polyhydramnios (increased amniotic fluid during pregnancy) and increased nuchal fold during pregnancy
- Specific facial features such as a large nose
- Severe and sometimes refractory seizures, abnormalities on the magnetic resonance imaging of the brain
- Increased 2-oxoglutaric acid in the blood and urine - this compound is made or used by several enzymes
- Finger-like thumbs
- Visual impairment
- Peripheral neuropathy (nerves conducting sensation from extremities to the brain) and insensivity to pain
Intellectual impairment is present in all reported cases, but the severity can vary widely. The prognosis in terms of survival also varies greatly from early childhood till adulthood.
People with ODD syndrome often have a characteristic appearance. Visible features of the condition include:
- small teeth that are prone to caries because of underdeveloped tooth enamel;
- a long, thin nose;
- unusually small eyes; and
- type III syndactyly of the fourth and fifth fingers.
Iris atrophy and glaucoma are more common than average. The size of the eyes often interferes with learning to read; special eyeglasses may be required. Hair may be fine, thin, dry, or fragile; in some families, it is curly.
Neurologic abnormalities may be seen in adults. The neurologic changes may appear earlier in each subsequent generation and can include abnormal white matter, conductive deafness, and various kinds of paresis, including ataxia, spastic paraplegia, difficulty controlling the eyes, and bladder and bowel disturbances.
It is a genetic developmental disorder with clinical diversity characterized by hypoparathyroidism, sensorineural deafness and renal disease. Patients usually present with hypocalcaemia, tetany, or afebrile convulsions at any age. Hearing loss is usually bilateral and may range from mild to profound impairment. Renal disease includes nephrotic syndrome, cystic kidney, renal dysplasia, hypoplasia or aplasia, pelvicalyceal deformity, vesicoureteral reflux, chronic kidney disease, hematuria, proteinuria and renal scarring.
Michel aplasia, also known as complete labyrinthine aplasia (CLA), is a congenital abnormality of the inner ear. It is characterized by the bilateral absence of differentiated inner ear structures and results in complete deafness (anacusis).
Michel aplasia should not be confused with michel dysplasia. It may affect one or both ears.
"Aplasia" is the medical term for body parts that are absent or do not develop properly. In Michel aplasia, the undeveloped (anaplastic) body part is the bony labyrinth of the inner ear. Other nearby structures may be underdeveloped as well.
Abnormal development of the skeletal portions of the second arch
1. Nondifferentiation of the stapes, with resultant absence of round and oval window.
2. Abnormal course of the facial nerve.
Skull base abnormalities
1. Hypoplasia of the petrous temporal bone.
2. Hypoplastic and sclerotic petrous apex may mimic labyrinthitis ossificans.
3. Platybasia.
4. Aberrant course of jugular veins.
DOOR (deafness, onychdystrophy, osteodystrophy, and mental retardation) syndrome is a genetic disease which is inherited in an autosomal recessive fashion. DOOR syndrome is characterized by mental retardation, sensorineural deafness, abnormal nails and phalanges of the hands and feet, and variable seizures. A similar deafness-onychodystrophy syndrome is transmitted as an autosomal dominant trait and has no mental retardation. Some authors have proposed that it may be the same as Eronen Syndrome, but since both disorders are extremely rare it is hard to make a determination.
Tietz syndrome is characterized by profound hearing loss from birth, white hair and pale skin (hair color may darken over time to blond or red).
The hearing loss is caused by abnormalities of the inner ear (sensorineural hearing loss) and is present from birth. Individuals with Tietz syndrome often have skin and hair color that is lighter than those of other family members.
Tietz syndrome also affects the eyes. The iris in affected individuals is blue, and specialized cells in the eye called retinal pigment epithelial cells lack their normal pigment. The changes to these cells are generally detectable only by an eye examination; it is unclear whether the changes affect vision.
Weissenbacher–Zweymuller syndrome (WZS), also called Pierre-Robin syndrome with fetal chondrodysplasia, is an autosomal recessive congenital disorder, linked to mutations (955 gly -> glu) in the "COL11A2" gene (located on chromosomal position 6p21.3), which codes for the α strand of collagen type XI. It is a collagenopathy, types II and XI disorder.
Symptoms vary from one type of the syndrome to another and from one patient to another, but they include:
- Very pale or brilliantly blue eyes, eyes of two different colors (complete heterochromia), or eyes with one iris having two different colors (sectoral heterochromia)
- A forelock of white hair ("poliosis"), or premature graying of the hair
- Appearance of wide-set eyes due to a prominent, broad nasal root ("dystopia canthorum")—particularly associated with Type I) also known as "telecanthus"
- Moderate to profound hearing loss (higher frequency associated with Type II);
- A low hairline and eyebrows that meet in the middle ("synophrys")
- Patches of white skin pigmentation, in some cases
- Abnormalities of the arms, associated with Type III
- neurologic manifestations, associated with Type IV
- Cleft lip, mostly associated with Type I
Waardenburg syndrome has also been associated with a variety of other congenital disorders, such as intestinal and spinal defects, elevation of the scapula and cleft lip and palate. Sometimes this is concurrent with Hirschsprung disease.
Craniometaphyseal dysplasia is diagnosed based on clinical and radiographic findings that include hyperostosis. Some things such as cranial base sclerosis and nasal sinuses obstruction can be seen during the beginning of the child's life. In radiographic findings the most common thing that will be found is the narrowing of foramen magnum and the widening of long bones. Once spotted treatment is soon suggested to prevent further compression of the foramen magnum and disabling conditions.
BVVL is marked by a number of cranial nerve palsies, including those of the motor components involving the 7th and 9th-12th cranial nerves, spinal motor nerves, and upper motor neurons. Major features of BVVL include facial and neck weakness, fasciculation of the tongue, and neurological disorders from the cranial nerves. The neurological manifestations develop insidiously: they usually begin with sensorineural deafness, progress inexorably to paralysis, and often culminate in respiratory failure. Most mortality in patients has been from either respiratory infections or respiratory muscle paralysis. Pathological descriptions of BVVL include injury and depletion of 3rd-7th cranial nerves, loss of the spinal anterior horn cells, degeneration of Purkinje cells, as well as degeneration of the spinocerebellar and pyramidal tracts. The first symptoms in nearly all cases of BVVL is progressive vision loss and deafness, and the first initial symptoms are seen anywhere from one to three years.
Most cases of deafness are followed by a latent period that can extend anywhere from weeks to years, and this time is usually marked by cranial nerve degeneration. Neurological symptoms of BVVL include optic atrophy, cerebellar ataxia, retinitis pigmentosa, epilepsy and autonomic dysfunction. Non-neurological symptoms can include diabetes, auditory hallucinations, respiratory difficulties, color blindness, and hypertension.
Being an extremely rare autosomal genetic disorder, differential diagnosis has only led to several cases since 1972. Initial diagnosis lends itself to facial abnormalities including sloping forehead, maxillary hypoplasia, nasal bridge depression, wide mouth, dental maloclusion, and receding chin. Electroencephalography (EEG), computed tomography (CT) scanning, and skeletal survey are further required for confident diagnosis. Commonly, diffuse cartilage calcification and brachytelephalangism are identified by X-radiation (X-ray), while peripheral pulmonary arterial stenosis, hearing loss, dysmorphic facies, and mental retardation are confirmed with confidence by the aforementioned diagnostic techniques.
Tietz syndrome, also called Tietz albinism-deafness syndrome or albinism and deafness of Tietz, is an autosomal dominant congenital disorder characterized by deafness and leucism. It is caused by a mutation in the microphthalmia-associated transcription factor (MITF) gene. Tietz syndrome was first described in 1963 by Walter Tietz (1927–2003) a German Physician working in California.
Nonsyndromic deafness is hearing loss that is not associated with other signs and symptoms. In contrast, syndromic deafness involves hearing loss that occurs with abnormalities in other parts of the body. Genetic changes are related to the following types of nonsyndromic deafness.
- DFNA: nonsyndromic deafness, autosomal dominant
- DFNB: nonsyndromic deafness, autosomal recessive
- DFNX: nonsyndromic deafness, X-linked
- nonsyndromic deafness, mitochondrial
Each type is numbered in the order in which it was described. For example, DFNA1 was the first described autosomal dominant type of nonsyndromic deafness. Mitochondrial nonsyndromic deafness involves changes to the small amount of DNA found in mitochondria, the energy-producing centers within cells.
Most forms of nonsyndromic deafness are associated with permanent hearing loss caused by damage to structures in the inner ear. The inner ear consists of three parts: a snail-shaped structure called the cochlea that helps process sound, nerves that send information from the cochlea to the brain, and structures involved with balance. Loss of hearing caused by changes in the inner ear is called sensorineural deafness. Hearing loss that results from changes in the middle ear is called conductive hearing loss. The middle ear contains three tiny bones that help transfer sound from the eardrum to the inner ear. Some forms of nonsyndromic deafness involve changes in both the inner ear and the middle ear; this combination is called mixed hearing loss.
The severity of hearing loss varies and can change over time. It can affect one ear (unilateral) or both ears (bilateral). Degrees of hearing loss range from mild (difficulty understanding soft speech) to profound (inability to hear even very loud noises). The loss may be stable, or it may progress as a person gets older. Particular types of nonsyndromic deafness often show distinctive patterns of hearing loss. For example, the loss may be more pronounced at high, middle, or low tones.
Nonsyndromic deafness can occur at any age. Hearing loss that is present before a child learns to speak is classified as prelingual or congenital. Hearing loss that occurs after the development of speech is classified as postlingual.
In the beginning, medical officials defined ABCD syndrome by the four key characteristics of the syndrome. In the first case study of the Kurdish girl, researches described her as having "albinism and a black lock at the right temporo-occipital region along Blaschko lines, her eyelashes and brows were white, the irises in her eyes appeared to be blue, she had spots of retinal depigmentation, and she did not react to noise." The albinism is interesting in this diagnosis because the skin of an affected individual is albino pale besides the brown patches of mispigmented skin. The "black locks" described and seen in clinical pictures of the infants are thick patches of black hair above the ears that form a half circle reaching to the other ear to make a crest shape.
As identified in this first case study and stated in a dictionary of dermatologic syndromes, ABCD syndrome has many notable features, including "snow white hair in patches, distinct black locks of hair, skin white except brown macules, deafness, irises gray to blue, nystagmus, photophobia, poor visual activity, normal melanocytes in pigmented hair and skin, and absent melanocytes in areas of leukoderma." Individuals have the blue/gray irises typical of people affected by blindness. The C of ABCD syndrome is what distinguishes this genetic disorder from BADS and it involves cell migration disorder of the neurocytes of the gut. This characteristic occurs when nerve cells do not function correctly in the gut, which results in aganglionosis: The intestines’ failure to move food along the digestive tract. Deafness or being unresponsive to noise due to very low quality of hearing was reported in every case of ABCD syndrome. The characteristics of ABCD syndrome are clearly evident in an inflicted individual.
No longer considered a separate syndrome, ABCD syndrome is today considered to be a variation of Shah-Waardenburg type IV. Waardenburg syndrome (WS) is described as "the combination of sensorineural hearing loss, hypopigmentation of skin and hair, and pigmentary disturbances of the irides." Hearing loss and deafness, skin mispigmentation and albinism, and pigmentary changes in irises are the similarities between WS and ABCD. According to a dictionary of dermatologic syndromes, Waardenburg syndrome has many notable features, including "depigmentation of hair and skin – white forelock and premature graying of hair, confluent thick eyebrows, heterochromic irides or hypopigmentation of iris, laterally displaced inner canthi, congenital sensorineural deafness, broad nasal root, autosomal dominant disorder, and other associated findings, including black forelocks."
Theoretically, a mutation in any of the may cause disease, but below are some notable ones, with short description of symptoms:
- Adrenoleukodystrophy; leads to progressive brain damage, failure of the adrenal glands and eventually death.
- Alport syndrome; glomerulonephritis, endstage kidney disease, and hearing loss.
- Androgen insensitivity syndrome; variable degrees of undervirilization and/or infertility in XY persons of either gender
- Barth syndrome; metabolism distortion, delayed motor skills, stamina deficiency, hypotonia, chronic fatigue, delayed growth, cardiomyopathy, and compromised immune system.
- Blue cone monochromacy; low vision acuity, color blindness, photophobia, infantile nystagmus.
- Centronuclear myopathy; where cell nuclei are abnormally located in skeletal muscle cells. In CNM the nuclei are located at a position in the center of the cell, instead of their normal location at the periphery.
- Charcot–Marie–Tooth disease (CMTX2-3); disorder of nerves (neuropathy) that is characterized by loss of muscle tissue and touch sensation, predominantly in the feet and legs but also in the hands and arms in the advanced stages of disease.
- Coffin–Lowry syndrome; severe mental retardation sometimes associated with abnormalities of growth, cardiac abnormalities, kyphoscoliosis as well as auditory and visual abnormalities.
- Fabry disease; A lysosomal storage disease causing anhidrosis, fatigue, angiokeratomas, burning extremity pain and ocular involvement.
- Hunter's Syndrome; potentially causing hearing loss, thickening of the heart valves leading to a decline in cardiac function, obstructive airway disease, sleep apnea, and enlargement of the liver and spleen.
- Hypohidrotic ectodermal dysplasia, presenting with hypohidrosis, hypotrichosis, hypodontia
- Kabuki syndrome; multiple congenital anomalies and mental retardation.
- Spinal and bulbar muscular atrophy; muscle cramps and progressive weakness
- Lesch-Nyhan syndrome; neurologic dysfunction, cognitive and behavioral disturbances including self-mutilation, and uric acid overproduction (hyperuricemia)
- Lowe Syndrome; hydrophthalmia, cataracts, intellectual disabilities, aminoaciduria, reduced renal ammonia production and vitamin D-resistant rickets
- Menkes disease; sparse and coarse hair, growth failure, and deterioration of the nervous system
- Nasodigitoacoustic syndrome; mishaped nose, brachydactyly of the distal phalanges, sensorineural deafness
- Nonsyndromic deafness; hearing loss
- Norrie disease; cataracts, leukocoria along with other developmental issues in the eye
- Occipital horn syndrome; deformations in the skeleton
- Ocular albinism; lack of pigmentation in the eye
- Ornithine transcarbamylase deficiency; developmental delay and mental retardation. Progressive liver damage, skin lesions, and brittle hair may also be seen
- Siderius X-linked mental retardation syndrome; cleft lip and palate with mental retardation and facial dysmorphism, caused by mutations in the histone demethylase PHF8
- Simpson-Golabi-Behmel syndrome; coarse faces with protruding jaw and tongue, widened nasal bridge, and upturned nasal tip
- Spinal muscular atrophy caused by UBE1 gene mutation; weakness due to loss of the motor neurons of the spinal cord and brainstem
- Wiskott-Aldrich syndrome; eczema, thrombocytopenia, immune deficiency, and bloody diarrhea
- X-linked Severe Combined Immunodeficiency (SCID); infections, usually causing death in the first years of life
- X-linked sideroblastic anemia; skin paleness, fatigue, dizziness and enlarged spleen and liver.
Oculodentodigital syndrome (ODD syndrome) is an extremely rare genetic condition that typically results in small eyes, underdeveloped teeth, and syndactyly and malformation of the fourth and fifth fingers. It has also been called oculo-dento-digital syndrome, oculodentodigital dysplasia (ODDD), and oculodentoosseous dysplasia (ODOD). It is considered a kind of ectodermal dysplasia.
Type 1 usually begins somewhere in the first three to 18 months of age and in considered the most severe of the three types. Symptoms include:
- Coarse facial features
- Enlarged liver, spleen, and/or heart
- Intellectual disability
- Seizures
- Abnormal bone formation of many bones
- Progressive deterioration of brain and spinal cord
- Increased or decreased perspiration
Patients have no vascular lesions, but have rapid psychomotor regression, severe and rapidly progressing neurologic signs, elevated sodium and chloride excretion in the sweat, and fatal outcome before the sixth year.
Fountain syndrome is an autosomal recessive congenital disorder characterized by mental retardation, deafness, skeletal abnormalities and a coarse face with full lips. The abnormal swelling of the cheeks and lips are due to the excessive accumulation of body fluids under the skin. The deafness is due to malformation of the cochlea structure within the inner ear.
Symptoms of early infantile GM1 (the most severe subtype, with onset shortly after birth) may include neurodegeneration, seizures, liver enlargement (hepatomegaly), spleen enlargement (splenomegaly), coarsening of facial features, skeletal irregularities, joint stiffness, distended abdomen, muscle weakness, exaggerated startle response to sound, and problems with gait.
About half of affected patients develop cherry-red spots in the eye.
Children may be deaf and blind by age 1 and often die by age 3 from cardiac complications or pneumonia.
- Autosomal recessive disorder; beta-galactosidase deficiency; neuronal storage of GM1 ganglioside and visceral storage of galactosyl oligosaccharides and keratan sulfate.
- Early psychomotor deterioration: decreased activity and lethargy in the first weeks; never sit; feeding problems - failure to thrive; visual failure (nystagmus noted) by 6 months; initial hypotonia; later spasticity with pyramidal signs; secondary microcephaly develops; decerebrate rigidity by 1 year and death by age 1–2 years (due to pneumonia and respiratory failure); some have hyperacusis.
- Macular cherry-red spots in 50% by 6–10 months; corneal opacities in some
- Facial dysmorphology: frontal bossing, wide nasal bridge, facial edema (puffy eyelids); peripheral edema, epicanthus, long upper lip, microretrognathia, gingival hypertrophy (thick alveolar ridges), macroglossia
- Hepatomegaly by 6 months and splenomegaly later; some have cardiac failure
- Skeletal deformities: flexion contractures noted by 3 months; early subperiosteal bone formation (may be present at birth); diaphyseal widening later; demineralization; thoracolumbar vertebral hypoplasia and beaking at age 3–6 months; kyphoscoliosis. *Dysostosis multiplex (as in the mucopolysaccharidoses)
- 10–80% of peripheral lymphocytes are vacuolated; foamy histiocytes in bone marrow; visceral mucopolysaccharide storage similar to that in Hurler disease; GM1 storage in cerebral gray matter is 10-fold elevated (20–50-fold increased in viscera)
- Galactose-containing oligosacchariduria and moderate keratan sulfaturia
- Morquio disease Type B: Mutations with higher residual beta-galactosidase activity for the GM1 substrate than for keratan sulfate and other galactose-containing oligosaccharides have minimal neurologic involvement but severe dysostosis resembling Morquio disease type A (Mucopolysaccharidosis type 4).
Diagnosis is often confirmed by several abnormalities of skeletal origin. There is a sequential order of findings, according to Cormode et al., which initiate in abnormal cartilage calcification and later brachytelephalangism. The uniqueness of brachytelephalangy in KS results in distinctively broadened and shortened first through fourth distal phalanges, while the fifth distal phalanx bone remains unaffected. Radiography also reveals several skeletal anomalies including facial hypoplasia resulting in underdevelopment of the nasal bridge with noticeably diminished alae nasi. In addition to distinguishable facial features, patients generally demonstrate shorter than average stature and general mild developmental delay.
Onset of late infantile GM1 is typically between ages 1 and 3 years.
Neurological symptoms include ataxia, seizures, dementia, and difficulties with speech.
Brown-Vialetto-Van-Laere syndrome (BVVL), sometimes known as Brown's Syndrome, is a rare degenerative disorder often initially characterized by progressive sensorineural deafness.
The syndrome most often affects children, adolescents, and young adults. As knowledge of BVVL grows some adult patients have now been diagnosed. There is no known cure, however with prompt treatment the prognosis may be positive with some patients stabilizing and even minor improvements noted in certain cases.