Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Symptoms vary from one type of the syndrome to another and from one patient to another, but they include:
- Very pale or brilliantly blue eyes, eyes of two different colors (complete heterochromia), or eyes with one iris having two different colors (sectoral heterochromia)
- A forelock of white hair ("poliosis"), or premature graying of the hair
- Appearance of wide-set eyes due to a prominent, broad nasal root ("dystopia canthorum")—particularly associated with Type I) also known as "telecanthus"
- Moderate to profound hearing loss (higher frequency associated with Type II);
- A low hairline and eyebrows that meet in the middle ("synophrys")
- Patches of white skin pigmentation, in some cases
- Abnormalities of the arms, associated with Type III
- neurologic manifestations, associated with Type IV
- Cleft lip, mostly associated with Type I
Waardenburg syndrome has also been associated with a variety of other congenital disorders, such as intestinal and spinal defects, elevation of the scapula and cleft lip and palate. Sometimes this is concurrent with Hirschsprung disease.
Tietz syndrome is characterized by profound hearing loss from birth, white hair and pale skin (hair color may darken over time to blond or red).
The hearing loss is caused by abnormalities of the inner ear (sensorineural hearing loss) and is present from birth. Individuals with Tietz syndrome often have skin and hair color that is lighter than those of other family members.
Tietz syndrome also affects the eyes. The iris in affected individuals is blue, and specialized cells in the eye called retinal pigment epithelial cells lack their normal pigment. The changes to these cells are generally detectable only by an eye examination; it is unclear whether the changes affect vision.
Tietz syndrome, also called Tietz albinism-deafness syndrome or albinism and deafness of Tietz, is an autosomal dominant congenital disorder characterized by deafness and leucism. It is caused by a mutation in the microphthalmia-associated transcription factor (MITF) gene. Tietz syndrome was first described in 1963 by Walter Tietz (1927–2003) a German Physician working in California.
Development of the optical system is highly dependent on the presence of melanin. For this reason, the reduction or absence of this pigment in people with albinism may lead to:
- Misrouting of the retinogeniculate projections, resulting in abnormal decussation (crossing) of optic nerve fibres
- Photophobia and decreased visual acuity due to light scattering within the eye (ocular straylight) Photophobia is specifically when light enters the eye, unrestricted—with full force. It is painful and causes extreme sensitivity to light.
- Reduced visual acuity due to foveal hypoplasia and possibly light-induced retinal damage.
Eye conditions common in albinism include:
- Nystagmus, irregular rapid movement of the eyes back and forth, or in circular motion.
- Amblyopia, decrease in acuity of one or both eyes due to poor transmission to the brain, often due to other conditions such as strabismus.
- Optic nerve hypoplasia, underdevelopment of the optic nerve.
The improper development of the retinal pigment epithelium (RPE), which in normal eyes absorbs most of the reflected sunlight, further increases glare due to light scattering within the eye. The resulting sensitivity (photophobia) generally leads to discomfort in bright light, but this can be reduced by the use of sunglasses or brimmed hats.
In humans, there are two principal types of albinism: oculocutaneous, affecting the eyes, skin and hair, and ocular affecting the eyes only.
There are different types of oculocutaneous albinism depending on which gene has undergone mutation. With some there is no pigment at all. The other end of the spectrum of albinism is "a form of albinism called rufous oculocutaneous albinism, which usually affects dark-skinned people".
According to the National Organization for Albinism and Hypopigmentation, "With ocular albinism, the color of the iris of the eye may vary from blue to green or even brown, and sometimes darkens with age. However, when an eye doctor examines the eye by shining a light from the side of the eye, the light shines back through the iris since very little pigment is present."
Because individuals with albinism have skin that entirely lacks the dark pigment melanin, which helps protect the skin from the sun's ultraviolet radiation, their skin can burn more easily from overexposure.
The human eye normally produces enough pigment to color the iris blue, green or brown and lend opacity to the eye. In photographs, those with albinism are more likely to demonstrate "red eye", due to the red of retina being visible through the iris. Lack of pigment in the eyes also results in problems with vision, both related and unrelated to photosensitivity.
Those afflicted with albinism are generally as healthy as the rest of the population (but see related disorders below), with growth and development occurring as normal, and albinism by itself does not cause mortality, although the lack of pigment blocking ultraviolet radiation increases the risk of melanomas (skin cancers) and other problems.
In the beginning, medical officials defined ABCD syndrome by the four key characteristics of the syndrome. In the first case study of the Kurdish girl, researches described her as having "albinism and a black lock at the right temporo-occipital region along Blaschko lines, her eyelashes and brows were white, the irises in her eyes appeared to be blue, she had spots of retinal depigmentation, and she did not react to noise." The albinism is interesting in this diagnosis because the skin of an affected individual is albino pale besides the brown patches of mispigmented skin. The "black locks" described and seen in clinical pictures of the infants are thick patches of black hair above the ears that form a half circle reaching to the other ear to make a crest shape.
As identified in this first case study and stated in a dictionary of dermatologic syndromes, ABCD syndrome has many notable features, including "snow white hair in patches, distinct black locks of hair, skin white except brown macules, deafness, irises gray to blue, nystagmus, photophobia, poor visual activity, normal melanocytes in pigmented hair and skin, and absent melanocytes in areas of leukoderma." Individuals have the blue/gray irises typical of people affected by blindness. The C of ABCD syndrome is what distinguishes this genetic disorder from BADS and it involves cell migration disorder of the neurocytes of the gut. This characteristic occurs when nerve cells do not function correctly in the gut, which results in aganglionosis: The intestines’ failure to move food along the digestive tract. Deafness or being unresponsive to noise due to very low quality of hearing was reported in every case of ABCD syndrome. The characteristics of ABCD syndrome are clearly evident in an inflicted individual.
No longer considered a separate syndrome, ABCD syndrome is today considered to be a variation of Shah-Waardenburg type IV. Waardenburg syndrome (WS) is described as "the combination of sensorineural hearing loss, hypopigmentation of skin and hair, and pigmentary disturbances of the irides." Hearing loss and deafness, skin mispigmentation and albinism, and pigmentary changes in irises are the similarities between WS and ABCD. According to a dictionary of dermatologic syndromes, Waardenburg syndrome has many notable features, including "depigmentation of hair and skin – white forelock and premature graying of hair, confluent thick eyebrows, heterochromic irides or hypopigmentation of iris, laterally displaced inner canthi, congenital sensorineural deafness, broad nasal root, autosomal dominant disorder, and other associated findings, including black forelocks."
Individuals with Stickler syndrome experience a range of signs and symptoms. Some people have no signs and symptoms; others have some or all of the features described below. In addition, each feature of this syndrome may vary from subtle to severe.
A characteristic feature of Stickler syndrome is a somewhat flattened facial appearance. This is caused by underdeveloped bones in the middle of the face, including the cheekbones and the bridge of the nose. A particular group of physical features, called the Pierre Robin sequence, is common in children with Stickler syndrome. Robin sequence includes a U-shaped or sometimes V-shaped cleft palate (an opening in the roof of the mouth) with a tongue that is too large for the space formed by the small lower jaw. Children with a cleft palate are also prone to ear infections and occasionally swallowing difficulties.
Many people with Stickler syndrome are very nearsighted (described as having high myopia) because of the shape of the eye. People with eye involvement are prone to increased pressure within the eye (ocular hypertension) which could lead to glaucoma and tearing or detachment of the light-sensitive retina of the eye (retinal detachment). Cataract may also present as an ocular complication associated with Stickler's Syndrome. The jelly-like substance within the eye (the vitreous humour) has a distinctive appearance in the types of Stickler syndrome associated with the COL2A1 and COL11A1 genes. As a result, regular appointments to a specialist ophthalmologist are advised. The type of Stickler syndrome associated with the COL11A2 gene does not affect the eye.
People with this syndrome have problems that affect things other than the eyes and ears. Arthritis, abnormality to ends of long bones, vertebrae abnormality, curvature of the spine, scoliosis, joint pain, and double jointedness are all problems that can occur in the bones and joints. Physical characteristics of people with Stickler can include flat cheeks, flat nasal bridge, small upper jaw, pronounced upper lip groove, small lower jaw, and palate abnormalities, these tend to lessen with age and normal growth and palate abnormalities can be treated with routine surgery.
Another sign of Stickler syndrome is mild to severe hearing loss that, for some people, may be progressive (see hearing loss with craniofacial syndromes). The joints of affected children and young adults may be very flexible (hypermobile). Arthritis often appears at an early age and worsens as a person gets older. Learning difficulties, not intelligence, can also occur because of hearing and sight impairments if the school is not informed and the student is not assisted within the learning environment.
Stickler syndrome is thought to be associated with an increased incidence of mitral valve prolapse of the heart, although no definitive research supports this.
Piebaldism is a rare autosomal dominant disorder of melanocyte development. Common characteristics include a congenital white forelock, scattered normal pigmented and hypopigmented macules and a triangular shaped depigmented patch on the forehead. There is nevertheless great variation in the degree and pattern of presentation, even within affected families. In some cases, piebaldism occurs together with severe developmental problems, as in Waardenburg syndrome and Hirschsprung's disease. It has been documented to occur in all races; early photographers captured many images of African piebalds used as a form of amusement, and George Catlin is believed to have painted several portraits of Native Americans of the Mandan tribe who were affected by piebaldism. Piebaldism is found in nearly every species of mammal. It is very common in mice, rabbits, dogs, sheep, deer, cattle and horses—where selective breeding has increased the incidence of the mutation-, but occurs among chimpanzees and other primates only as rarely as among humans. Piebaldism is completely unrelated to acquired or infectious conditions such as vitiligo or poliosis.
"Pie" is a word for multi-colored and "bald" is related to a root word for "skin." Although piebaldism may visually appear to be partial albinism, it is a fundamentally different condition. The vision problems associated with albinism are not usually present as eye pigmentation is normal. Piebaldism differs from albinism in that the affected cells maintain the ability to produce pigment but have that specific function turned off. In albinism the cells lack the ability to produce pigment altogether. Human piebaldism has been observed to be associated with a very wide range and varying degrees of endocrine disorders, and is occasionally found together with heterochromia of the irises, congenital deafness, or incomplete gastrointestinal tract development, possibly all with the common cause of premature cutting off of human fetal growth hormone during gestation. Piebaldism is a kind of neurocristopathy, involving defects of various neural crest cell lineages that include melanocytes, but also involving many other tissues derived from the neural crest. Oncogenic factors, including mistranscription, are hypothesized to be related to the degree of phenotypic variation among affected individuals.
Ocular albinism is a form of albinism which, in contrast to oculocutaneous albinism, presents primarily in the eyes. There are multiple forms of ocular albinism, which are clinically similar.
Both known genes are on the X chromosome. When the term ""autosomal recessive ocular albinism"" ("AROA") is used, it usually refers to mild variants of oculocutaneous albinism rather than ocular albinism, which is "X-linked".
Waardenburg syndrome is a rare genetic disorder most often characterized by varying degrees of deafness, minor defects in structures arising from the neural crest, and pigmentation changes. It was first described in 1951. The syndrome was later found to have four types. For example, type II was identified in 1971, to describe cases where dystopia canthorum was not present. Some types are now split into subtypes, based upon the gene responsible for the condition.
Oculocutaneous albinism (OCA) is a form of albinism involving the eyes (""), the skin ("-"), and according to some definitions, the hair.
Overall, an estimated 1 in 20,000 people worldwide are born with oculocutaneous albinism. OCA is caused by mutations in several genes that control the synthesis of melanin within the melanocytes.
Four types of oculocutaneous albinism have been described, all caused by a disruption of melanin synthesis and all autosomal recessive disorders.
OA1 is recognized by many different symptoms. Reduced visual acuity is accompanied by involuntary movements of the eye termed as nystagmus. Astigmatism is a condition wherein there occurs significant refractive error. Moreover, ocular albino eyes become crossed, a condition called as ‘lazy eyes’ or strabismus. Since very little pigment is present the iris becomes translucent and reflects light back. It appears green to blueish red. However, the most important part of the eye, the fovea which is responsible for acute vision, does not develop properly, probably indicating the role of melanin in the development stages of the eye. Some affected individuals may also develop photophobia/photodysphoria. All these symptoms are due to lack of pigmentation of the retina. Moreover, in an ocular albino eye, nerves from back of the eye to the brain may not follow the usual pattern of routing. In an ocular albino eye, more nerves cross from back of the eye to the opposite side of the brain instead of going to the both sides of the brain as in a normal eye. An ocular albino eye appears blueish pink in color with no pigmentation at all unlike a normal eye. Carrier women have regions of hypo- and hyper-pigmentation due to X-inactivation and partial iris transillumination and do not show any other symptoms exhibited by those affected by OA1.
All types of Griscelli syndrome have distinctive skin and hair coloring.
Type 1 is associated with eurological abnormalities. These include delayed development, intellectual disability, seizures, hypotonia and eye abnormalities.
Type 2 - unlike type 1 - is not associated primary neurological disease but is associated with an uncontrolled T lymphocyte expansion and macrophage activation syndrome. It is often associated with the hemophagocytic syndrome. This latter condition may be fatal in the absence of bone marrow transplantation.
Persons with type 3 have the typical light skin and hair coloring but are otherwise normal.
This syndrome consists a number of typical features. These include
- Agenesis of the corpus callosum (80-99% patients)
- Hypopigmentation of the eyes and hair (80-99% patients)
- Cardiomyopathy (80-99% patients)
- Combined immunodeficiency (80-99% patients)
- Muscular hypotonia (80-99% patients)
- Abnormality of retinal pigmentation (80-99% patients)
- Recurrent chest infections (80-99% patients)
- Abnormal EEG (80-99% patients)
- Intellectual disability (80-99% patients)
- Cataracts (75%)
- Seizures (65%)
- Renal abnormalities (15%)
Infections of the gastrointestinal and urinary tracts are common. Swallowing and feeding difficulties early on may result in a failure to thrive. Optic nerve hypoplasia, nystagmus and photophobia may occur. Facial dysmorphism (cleft lip/palate and micrognathia) and syndactyly may be present. Sensorineural hearing loss may also be present.
Death in infancy is not uncommon and is usually due to cardiac complications or severe infections.
ABCD syndrome is defined as albinism, black lock, cell migration disorder of the neurocytes of the gut, and deafness. It was initially misdiagnosed and later discovered that a homozygous mutation in the EDNRB gene causes ABCD syndrome. This helped scientists discover that it is the same as type IV Waardenburg syndrome, also known as Shah-Waardenburg syndrome.
Weill–Marchesani syndrome is a rare genetic disorder characterized by short stature; an unusually short, broad head (brachycephaly) and other facial abnormalities; hand defects, including unusually short fingers (brachydactyly); and distinctive eye (ocular) abnormalities. It was named after ophthalmologists Georges Weill (1866-1952) and Oswald Marchesani (1900-1952) who first described it in 1932 and 1939, respectively.
The eye manifestations typically include unusually small, round lenses of the eyes (spherophakia), which may be prone to dislocating (ectopia lentis), as well as other ocular defects. Due to such abnormalities, affected individuals may have varying degrees of visual impairment, ranging from nearsightedness myopia to blindness. Researchers suggest that Weill–Marchesani syndrome may have autosomal recessive or autosomal dominant inheritance.
Ocular albinism type 1 (OA1), also called Nettleship–Falls syndrome, is the most common type of ocular albinism, with a prevalence rate of 1:50,000. It is an inheritable classical Mendelian type X-linked recessive disorder wherein the retinal pigment epithelium lacks pigment while hair and skin appear normal. Since it is usually an X-linked disorder, it occurs mostly in males, while females are carriers unless they are homozygous. About 60 missense and nonsense mutations, insertions, and deletions have been identified in "Oa1". Mutations in OA1 have been linked to defective glycosylation and thus improper intracellular transportation.
The eponyms of the name "Nettleship–Falls syndrome" are the ophthalmologists Edward Nettleship and Harold Francis Falls.
This condition is characterised by symmetrical lesions on the temples resembling forceps marks. It is characterized a puckered skin due to a virtual absence of subcutaneous fat. It is apparent at birth. Other lesions that may be present include puffy, wrinkled skin around the eyes and/or abnormalities of the eyelashes, eyebrows, and eyelids. The eyebrows may be up slanting or outward slanting. Occasionally the bridge of the nose may appear flat, while the tip may appear unusually rounded. The chin may be furrowed. The upper lip may be prominent with a down turned mouth. Other features that have been reported include dysplastic and low set ears, linear radiatory impressions on the forehead and congenital horizontal nystagmus.
Those with the Setleis syndrome may be missing eyelashes on both the upper and lower lids or may have multiple rows of lashes on the upper lids but none on the lower lids.A possible association with intra abdominal cancer has been reported but to date this has not been confirmed in other studies.
Stickler syndrome (hereditary progressive arthro-ophthalmopathy) is a group of genetic disorders affecting connective tissue, specifically collagen. Stickler syndrome is a subtype of collagenopathy, types II and XI. Stickler syndrome is characterized by distinctive facial abnormalities, ocular problems, hearing loss, and joint problems. It was first studied and characterized by Gunnar B. Stickler in 1965.
Oculocutaneous Albinism Type I or –Type 1A (OCA1A) is an autosomal recessive skin disease associated with albinism. This type of albinism is caused when the gene OCA1 does not function properly.
The location of OCA1 may be written as "11q1.4-q2.1", meaning it is on chromosome 11, long arm, somewhere in the range of band 1, sub-band 4, and band 2, sub-band 1.
Aniridia is the absence of the iris, usually involving both eyes. It can be congenital or caused by a penetrant injury. Isolated aniridia is a congenital disorder which is not limited to a defect in iris development, but is a panocular condition with macular and optic nerve hypoplasia, cataract, and corneal changes. Vision may be severely compromised and the disorder is frequently associated with a number of ocular complications: nystagmus, amblyopia, buphthalmos, and cataract. Aniridia in some individuals occurs as part of a syndrome, such as WAGR syndrome (kidney nephroblastoma (Wilms tumour), genitourinary anomalies and intellectual disability), or Gillespie syndrome (cerebellar ataxia).
The most prominent symptoms of BPES are horizontally narrow eyes (blepharophimosis), drooping eyelids (ptosis), and a fold of skin running from the side of the nose to the lower eyelid (epicanthus inversus). Other common symptoms include lack of an eyelid fold, widely spaced eyes (telecanthus), low nose bridge, and ear malformations (including cupping and incomplete development). Rare symptoms include microphthalmos (abnormally small eyes), tear ducts in the wrong location, and high arched palate. Female infertility can occur with type I BPES.
Theoretically, a mutation in any of the may cause disease, but below are some notable ones, with short description of symptoms:
- Adrenoleukodystrophy; leads to progressive brain damage, failure of the adrenal glands and eventually death.
- Alport syndrome; glomerulonephritis, endstage kidney disease, and hearing loss.
- Androgen insensitivity syndrome; variable degrees of undervirilization and/or infertility in XY persons of either gender
- Barth syndrome; metabolism distortion, delayed motor skills, stamina deficiency, hypotonia, chronic fatigue, delayed growth, cardiomyopathy, and compromised immune system.
- Blue cone monochromacy; low vision acuity, color blindness, photophobia, infantile nystagmus.
- Centronuclear myopathy; where cell nuclei are abnormally located in skeletal muscle cells. In CNM the nuclei are located at a position in the center of the cell, instead of their normal location at the periphery.
- Charcot–Marie–Tooth disease (CMTX2-3); disorder of nerves (neuropathy) that is characterized by loss of muscle tissue and touch sensation, predominantly in the feet and legs but also in the hands and arms in the advanced stages of disease.
- Coffin–Lowry syndrome; severe mental retardation sometimes associated with abnormalities of growth, cardiac abnormalities, kyphoscoliosis as well as auditory and visual abnormalities.
- Fabry disease; A lysosomal storage disease causing anhidrosis, fatigue, angiokeratomas, burning extremity pain and ocular involvement.
- Hunter's Syndrome; potentially causing hearing loss, thickening of the heart valves leading to a decline in cardiac function, obstructive airway disease, sleep apnea, and enlargement of the liver and spleen.
- Hypohidrotic ectodermal dysplasia, presenting with hypohidrosis, hypotrichosis, hypodontia
- Kabuki syndrome; multiple congenital anomalies and mental retardation.
- Spinal and bulbar muscular atrophy; muscle cramps and progressive weakness
- Lesch-Nyhan syndrome; neurologic dysfunction, cognitive and behavioral disturbances including self-mutilation, and uric acid overproduction (hyperuricemia)
- Lowe Syndrome; hydrophthalmia, cataracts, intellectual disabilities, aminoaciduria, reduced renal ammonia production and vitamin D-resistant rickets
- Menkes disease; sparse and coarse hair, growth failure, and deterioration of the nervous system
- Nasodigitoacoustic syndrome; mishaped nose, brachydactyly of the distal phalanges, sensorineural deafness
- Nonsyndromic deafness; hearing loss
- Norrie disease; cataracts, leukocoria along with other developmental issues in the eye
- Occipital horn syndrome; deformations in the skeleton
- Ocular albinism; lack of pigmentation in the eye
- Ornithine transcarbamylase deficiency; developmental delay and mental retardation. Progressive liver damage, skin lesions, and brittle hair may also be seen
- Siderius X-linked mental retardation syndrome; cleft lip and palate with mental retardation and facial dysmorphism, caused by mutations in the histone demethylase PHF8
- Simpson-Golabi-Behmel syndrome; coarse faces with protruding jaw and tongue, widened nasal bridge, and upturned nasal tip
- Spinal muscular atrophy caused by UBE1 gene mutation; weakness due to loss of the motor neurons of the spinal cord and brainstem
- Wiskott-Aldrich syndrome; eczema, thrombocytopenia, immune deficiency, and bloody diarrhea
- X-linked Severe Combined Immunodeficiency (SCID); infections, usually causing death in the first years of life
- X-linked sideroblastic anemia; skin paleness, fatigue, dizziness and enlarged spleen and liver.
Diagnosis is made when several characteristic clinical signs are observed. There is no single test to confirm the presence of Weill–Marchesani syndrome. Exploring family history or examining other family members may prove helpful in confirming this diagnosis.
Griscelli syndrome is a rare autosomal recessive disorder characterized by albinism (hypopigmentation) with immunodeficiency, that usually causes death by early childhood.