Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
CIE has symptoms very similar to Lamellar ichthyosis (LI) but milder and is considered by many scientists to be a variant of that disease, so both diseases are grouped under the title autosomal recessive congenital ichthyosis (ARCI).
The baby is often born in a collodion membrane, a shiny, wax outer layer on the skin and usually with ectropion, having the lower eyelid turned outwards. When the membrane is shed the skin is red with a generalized white scale. Palms, soles and areas on the joints are often affected with hyperkeratosis, a thickening of the layer of dead skin cells on the surface of the skin. In classical CIE (unlike LI) there is little eclabion (eversion of the lips), ectropion and alopecia (hair loss).
Many people with ACRI don't fit neatly into the definition of LI or CIE but have characteristics of both diseases. The definitions of CIE and LI describe the extremes of the range of ACRI.
Infants with Krabbe disease are normal at birth. Symptoms begin between the ages of 3 and 6 months with irritability, fevers, limb stiffness, seizures, feeding difficulties, vomiting, and slowing of mental and motor development. In the first stages of the disease, doctors often mistake the symptoms for those of cerebral palsy. Other symptoms include muscle weakness, spasticity, deafness, optic atrophy, optic nerve enlargement, blindness, paralysis, and difficulty when swallowing. Prolonged weight loss may also occur. Juvenile- and adult-onset cases of Krabbe disease also occur, which have similar symptoms but slower progression.
Symptoms of this disorder commonly appear between one and two years of age. Symptoms include mildly coarsened facial features, deafness, ichthyosis and an enlarged liver and spleen (hepatosplenomegaly). Abnormalities of the skeleton, such as a curving of the spine and breast bone may occur. The skin of individuals afflicted with this disorder, is typically dry. Children affected by this disorder develop more slowly than normal and may display delayed speech and walking skills.
The disease is fatal, with symptoms that include neurological damage and severe mental retardation. These sulfatase enzymes are responsible for breaking down and recycling complex sulfate-containing sugars from lipids and mucopolysaccharides within the lysosome. The accumulation of lipids and mucopolysaccharides inside the lysosome results in symptoms associated with this disorder. Worldwide, forty cases of Multiple Sulfatase Deficiency have been reported to date.
Congenital Ichthyosiform Erythroderma (CIE), also known as Nonbullous congenital ichthyosiform erythroderma is a rare type the ichthyosis family of skin diseases which occurs in 1 in 200,000 to 300,000 births.
Infantile Refsum disease is one of three peroxisome biogenesis disorders which belong to the Zellweger spectrum of peroxisome biogenesis disorders (PBD-ZSD). The other two disorders are Zellweger syndrome (ZS) and neonatal adrenoleukodystrophy (NALD). Although they share a similar molecular basis for disease, Infantile Refsum disease is less severe than Zellweger syndrome.
Infantile Refsum disease is a developmental brain disorder. In addition, patients can show a reduction in central nervous system (CNS) myelin (particularly cerebral), which is referred to as (hypomyelination). Myelin is critical for normal CNS functions. Patients can also show postdevelopmental sensorineuronal degeneration that leads to a progressive loss of hearing and vision.
Infantile Refsum disease can also affect the function of many other organ systems. Patients can show craniofacial abnormalities, hepatomegaly (enlarged liver), and progressive adrenal dysfunction. Newborns may present with profound hypotonia (low muscle tone), and a poor ability to feed. In some patients, a progressive leukodystrophy has been observed that has a variable age of onset.
Individuals with Refsum disease present with neurologic damage, cerebellar degeneration, and peripheral neuropathy. Onset is most commonly in childhood/adolescence with a progressive course, although periods of stagnation or remission occur. Symptoms also include ataxia, scaly skin (ichthyosis), difficulty hearing, and eye problems including retinitis pigmentosa, cataracts, and night blindness. In 80% of patients diagnosed with Refsum disease, sensorineural hearing loss has been reported. This is hearing loss as the result of damage to the inner ear or the nerve connected to ear to the brain.
Theoretically, a mutation in any of the may cause disease, but below are some notable ones, with short description of symptoms:
- Adrenoleukodystrophy; leads to progressive brain damage, failure of the adrenal glands and eventually death.
- Alport syndrome; glomerulonephritis, endstage kidney disease, and hearing loss.
- Androgen insensitivity syndrome; variable degrees of undervirilization and/or infertility in XY persons of either gender
- Barth syndrome; metabolism distortion, delayed motor skills, stamina deficiency, hypotonia, chronic fatigue, delayed growth, cardiomyopathy, and compromised immune system.
- Blue cone monochromacy; low vision acuity, color blindness, photophobia, infantile nystagmus.
- Centronuclear myopathy; where cell nuclei are abnormally located in skeletal muscle cells. In CNM the nuclei are located at a position in the center of the cell, instead of their normal location at the periphery.
- Charcot–Marie–Tooth disease (CMTX2-3); disorder of nerves (neuropathy) that is characterized by loss of muscle tissue and touch sensation, predominantly in the feet and legs but also in the hands and arms in the advanced stages of disease.
- Coffin–Lowry syndrome; severe mental retardation sometimes associated with abnormalities of growth, cardiac abnormalities, kyphoscoliosis as well as auditory and visual abnormalities.
- Fabry disease; A lysosomal storage disease causing anhidrosis, fatigue, angiokeratomas, burning extremity pain and ocular involvement.
- Hunter's Syndrome; potentially causing hearing loss, thickening of the heart valves leading to a decline in cardiac function, obstructive airway disease, sleep apnea, and enlargement of the liver and spleen.
- Hypohidrotic ectodermal dysplasia, presenting with hypohidrosis, hypotrichosis, hypodontia
- Kabuki syndrome; multiple congenital anomalies and mental retardation.
- Spinal and bulbar muscular atrophy; muscle cramps and progressive weakness
- Lesch-Nyhan syndrome; neurologic dysfunction, cognitive and behavioral disturbances including self-mutilation, and uric acid overproduction (hyperuricemia)
- Lowe Syndrome; hydrophthalmia, cataracts, intellectual disabilities, aminoaciduria, reduced renal ammonia production and vitamin D-resistant rickets
- Menkes disease; sparse and coarse hair, growth failure, and deterioration of the nervous system
- Nasodigitoacoustic syndrome; mishaped nose, brachydactyly of the distal phalanges, sensorineural deafness
- Nonsyndromic deafness; hearing loss
- Norrie disease; cataracts, leukocoria along with other developmental issues in the eye
- Occipital horn syndrome; deformations in the skeleton
- Ocular albinism; lack of pigmentation in the eye
- Ornithine transcarbamylase deficiency; developmental delay and mental retardation. Progressive liver damage, skin lesions, and brittle hair may also be seen
- Siderius X-linked mental retardation syndrome; cleft lip and palate with mental retardation and facial dysmorphism, caused by mutations in the histone demethylase PHF8
- Simpson-Golabi-Behmel syndrome; coarse faces with protruding jaw and tongue, widened nasal bridge, and upturned nasal tip
- Spinal muscular atrophy caused by UBE1 gene mutation; weakness due to loss of the motor neurons of the spinal cord and brainstem
- Wiskott-Aldrich syndrome; eczema, thrombocytopenia, immune deficiency, and bloody diarrhea
- X-linked Severe Combined Immunodeficiency (SCID); infections, usually causing death in the first years of life
- X-linked sideroblastic anemia; skin paleness, fatigue, dizziness and enlarged spleen and liver.
All types of Griscelli syndrome have distinctive skin and hair coloring.
Type 1 is associated with eurological abnormalities. These include delayed development, intellectual disability, seizures, hypotonia and eye abnormalities.
Type 2 - unlike type 1 - is not associated primary neurological disease but is associated with an uncontrolled T lymphocyte expansion and macrophage activation syndrome. It is often associated with the hemophagocytic syndrome. This latter condition may be fatal in the absence of bone marrow transplantation.
Persons with type 3 have the typical light skin and hair coloring but are otherwise normal.
The main symptoms are given by its name: dry, scaly skin (ichthyosis), absence of hair (atrichia) and excessive sensitivity to light (photophobia). Additional features include short stature, mental retardation, seizures and a tendency for respiratory infections.
Trichothiodystrophy (TTD) is an autosomal recessive inherited disorder characterised by brittle hair and intellectual impairment. The word breaks down into "tricho" – "hair", "thio" – "sulphur", and "dystrophy" – "wasting away" or literally "bad nourishment". TTD is associated with a range of symptoms connected with organs of the ectoderm and neuroectoderm. TTD may be subclassified into four syndromes: Approximately half of all patients with trichothiodystrophy have photosensitivity, which divides the classification into syndromes with or without photosensitivity; BIDS and PBIDS, and IBIDS and PIBIDS. Modern covering usage is TTD-P (photosensitive), and TTD.
The acronym CHILD stands for the symptoms of the syndrome:
- CH = Congenital Hemidysplasia—One side of the body, most of the time the right side, is poorly developed. The right ribs, neck, vertebrae, etc. may be underdeveloped and the internal organs may be affected.
- I - Ichthyosiform Erythroderma—At birth or shortly after birth, there are red, inflamed patches (erythroderma), and flaky scales (ichthyosis) on the side of the body that is affected. Hair loss on the same side may also be possible.
- LD - limb defects—Fingers on the hand or toes on the foot of the affected side may be missing. An arm or leg may also be shortened or even missing.
Other abnormalities, affecting the scalp, head, face, jaw and teeth may be found with JBS. These include: ectodermal mid-line scalp defects with sparse, oddly-patterned hair growth; aplasia cutis (underdeveloped, very thin skin) over the head, an enlarged fontanelle ("soft spot" on the head of young infants), microcephaly (undersized skull), prominent forehead, absence of eyebrows and eyelashes, mongoloidal eye shape, nasolacrimo-cutaneous fistulae (this refers to the formation of an abnormal secondary passageway from either the tear duct or lacrimal sac to the facial skin surface, possibly discharging fluid), flattened ears, micrognathism of the maxilla and mandible (underdevelopment of the upper and lower jaw, respectively), with the maxilla more prominently affected in some cases; congenital clefting of bones surrounding the optical orbit (eye socket), such as the frontal and lacrimal bone; and maldeveloped deciduous teeth ("baby teeth"), with an absence of permanent teeth.
Infantile Refsum disease (IRD), also called infantile phytanic acid storage disease, is a rare autosomal recessive congenital peroxisomal biogenesis disorder within the Zellweger spectrum. These are disorders of the peroxisomes that are clinically similar to Zellweger syndrome and associated with mutations in the "PEX" family of genes. IRD is associated with deficient phytanic acid catabolism, as is Adult Refsum disease, but they are different disorders that should not be confused.
Sjögren–Larsson syndrome (SLS) is an autosomal recessive form of ichthyosis apparent at birth.
Sjögren–Larsson syndrome is a rare autosomal, recessive, neurocutaneous disease. This disease can be identified by a triad of medical disorders. The first is ichthyosis, which is a buildup of skin to form a scale-like covering that causes dry skin and other problems. The second identifier is spastic paraplegia which is characterized by leg spasms. The final identifier is intellectual delay.
The gene of SLS is found on chromosome 17. In order for a child to receive SLS both parents must be carriers of the SLS gene. If they are carriers their child has a ¼ chance of getting the disease. In 1957 Sjogren and Larsson proposed that the Swedes with the disease all descended from a common ancestor 600 years ago. Today only 30–40 persons in Sweden have this disease.
Multiple sulfatase deficiency (also known as "Austin disease", and "mucosulfatidosis") is a very rare autosomal recessive lysosomal storage disease caused by a deficiency in multiple sulfatase enzymes, or in formylglycine-generating enzyme, which activates sulfatases. It is similar to mucopolysaccharidosis.
Findings with the inner ear in JBS give explanation to the presence of bilateral sensorineural hearing loss in most patients affected by the disorder. The formation of cystic tissue in both the cochlea and vestibule, with resulting (widening) and malformation of these delicate structures has been implicated. Congenital deformations of the temporal bone and associated adverse anatomical effects on innervation and development of the inner ear also contribute to this type of hearing loss.
Krabbe disease (KD) (also known as globoid cell leukodystrophy or galactosylceramide lipidosis) is a rare and often fatal lysosomal storage disease which results in progressive damage to the nervous system. KD involves dysfunctional metabolism of sphingolipids and is inherited in an autosomal recessive pattern. The disease is named after the Danish neurologist Knud Krabbe (1885–1965).
New York, Missouri and Kentucky include Krabbe in the newborn screening panel.
The symptoms associated with the disorder are often confused for other dermatological disorders. The symptoms below are ones specifically associated with IPS.
Netherton syndrome is characterized by chronic skin inflammation, universal pruritus (itch), severe dehydration, and stunted growth. Patients with this disorder tend to have a hair shaft defect (trichorrhexis invaginata), also known as "bamboo hair". The disrupted skin barrier function in affected individuals also presents a high susceptibility to infection and allergy, leading to the development of scaly, reddish skin similar to atopic dermatitis. In severe cases, these atopic manifestations persist throughout the individual's life, and consequently post-natal mortality rates are high. In less severe cases, this develops into the milder ichthyosis linearis circumflexa.
Netherton syndrome has recently been characterised as a primary immunodeficiency, which straddles the innate and acquired immune system, much as does Wiskott-Aldrich syndrome. A group of Netherton patients have been demonstrated to have altered immunoglobulin levels (typically high IgE and low to normal IgG) and immature natural killer cells. These Natural Killer cells have a reduced lytic function; which can be improved with regular infusions of immunoglobulin (see 'Treatment'); although the mechanism for this is not clear.
Patients are more prone than healthy people to infections of all types, especially recurrent skin infections with staphylococcus. They may have more severe infections; but are not as vulnerable to opportunistic pathogens as patients with true Natural Killer cell deficiency-type SCID.
Type 1 usually begins somewhere in the first three to 18 months of age and in considered the most severe of the three types. Symptoms include:
- Coarse facial features
- Enlarged liver, spleen, and/or heart
- Intellectual disability
- Seizures
- Abnormal bone formation of many bones
- Progressive deterioration of brain and spinal cord
- Increased or decreased perspiration
Patients have no vascular lesions, but have rapid psychomotor regression, severe and rapidly progressing neurologic signs, elevated sodium and chloride excretion in the sweat, and fatal outcome before the sixth year.
The symptoms of ichthyosis hystrix Curth-Macklin are similar to epidermolytic hyperkeratosis (NPS-2 type) but there is no blistering and the hyperkeratosis is verrucous or spine-like. The hyperkeratosis is brown-grey in colour and is most obvious on the arms and legs. It is an autosomal dominant condition and can be caused by errors to the KRT1 gene. It is named after Helen Ollendorff Curth (1899-1982), a German-Jewish dermatologist, and Madge Thurlow Macklin (1893–1962), an American medical geneticist, and is one of the first syndromes named after two women.
Ichthyosis is a family of rare genetic skin disorders characterized by dry, thickened, scaly skin.
There are more than 20 types of ichthyosis which range in severity of symptoms, outward appearance, underlying genetic cause, and mode of inheritance (e.g., whether the abnormal gene inherited is dominant, recessive, autosomal, or X-linked). Ichthyosis comes from the , since dry, scaly skin is the defining feature of all forms of ichthyosis.
The severity of symptoms can vary enormously, from the mildest, most common, type such as ichthyosis vulgaris which may be mistaken for normal dry skin up to life-threatening conditions such as harlequin type ichthyosis. Ichthyosis vulgaris accounts for more than 95% of cases.
There are many types of ichthyoses and an exact diagnosis may be difficult. Types of ichthyoses are classified by their appearance and their genetic cause. Ichthyosis caused by the same gene can vary considerably in severity and symptoms. Some ichthyoses do not appear to fit exactly into any one type. Different genes can produce ichthyoses with similar symptoms. Of note, X-linked ichthyosis is associated with Kallmann syndrome (close to "KAL1" gene). The most common or well-known types are as follows:
Ichthyosis hystrix is a group of rare skin disorders in the ichthyosis family of skin disorders characterized by massive hyperkeratosis with an appearance like spiny scales. This term is also used to refer to a type of epidermal nevi with extensive bilateral distribution.
There are three main disorders caused by Hermansky–Pudlak syndrome, which result in these symptoms:
- Albinism and eye problems: Individuals will have varying amounts of skin pigment (melanin). Because of the albinism there are eye problems such as light sensitivity (photophobia), strabismus (crossed eyes), and nystagmus (involuntary eye movements). Hermansky–Pudlak syndrome also impairs vision.
- Bleeding disorders: Individuals with the syndrome have platelet dysfunction. Since platelets are necessary for blood clotting, individuals will bruise and bleed easily.
- Cellular storage disorders: The syndrome causes a wax-like substance (ceroid) to accumulate in the body tissues and cause damage, especially in the lungs and kidneys.
It is also associated with granulomatous colitis, an inflammation of the colon, and with pulmonary fibrosis, a potentially fatal lung disease.