Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Diagnosis typically occurs during the first 6 months of life due to characteristic neurological symptoms. These symptoms include muscle spasms, tetany, and seizures. Laboratory testing indicates hypomagnesemia (decreased serum magnesium levels), hypocalcemia (decreased serum calcium levels), and little to no measurable parathyroid hormone levels. Diagnosis is confirmed with these symptoms and can be further solidified with genetic sequencing of the TRPM6 gene.
Hypomagnesemia with secondary hypocalcemia (HSH) is an autosomal recessive genetic disorder affecting intestinal magnesium absorption. Decreased intestinal magnesium reabsorption and the resulting decrease in serum magnesium levels is believed to cause lowered parathyroid hormone (PTH) output by the parathyroid gland. This results in decreased PTH and decreased serum calcium levels (hypocalcemia). This manifests in convulsions and spasms in early infancy which, if left untreated, can lead to mental retardation or death. HSH is caused by mutations in the TRPM6 gene.
The disorder is characterized by the following:
Individuals with Albright hereditary osteodystrophy exhibit short stature, characteristically shortened fourth and fifth metacarpals, rounded facies, and often mild intellectual deficiency. Albright hereditary osteodystrophy is commonly known as pseudohypoparathyroidism because the kidney responds as if parathyroid hormone were absent. Blood levels of parathyroid hormone are elevated in pseudohypoparathyroidism due to the hypocalcemia
Hypocalcemia is common and can occur unnoticed with no symptoms or, in severe cases, can have dramatic symptoms and be life-threatening. Hypocalcemia can be parathyroid related or vitamin D related. Parathyroid related hypocalcemia includes post-surgical hypoparathyroidism, inherited hypoparathyroidism, pseudohypoparathyroidism, and pseudo-pseudohypoparathyroidism. Post-surgical hypoparathyroidism is the most common form, and can be temporary (due to suppression of tissue after removal of a malfunctioning gland) or permanent, if all parathyroid tissue has been removed. Inherited hypoparathyroidism is rare and is due to a mutation in the calcium sensing receptor. Pseudohypoparathyroidism is maternally inherited and is categorized by hypocalcemia and hyperphosphatemia. Finally, pseudo-pseudohypoparathyroidism is paternally inherited. Patients display normal parathyroid hormone action in the kidney, but exhibit altered parathyroid hormone action in the bone.
Vitamin D related hypocalcemia may be associated with a lack of vitamin D in the diet, a lack of sufficient UV exposure, or disturbances in renal function. Low vitamin D in the body can lead to a lack of calcium absorption and secondary hyperparathyroidism (hypocalcemia and raised parathyroid hormone). Symptoms of hypocalcemia include numbness in fingers and toes, muscle cramps, irritability, impaired mental capacity and muscle twitching.
Hypercalcemia is suspected to occur in approximately 1 in 500 adults in the general adult population. Like hypocalcemia, hypercalcemia can be non-severe and present with no symptoms, or it may be severe, with life-threatening symptoms. Hypercalcemia is most commonly caused by hyperparathyroidism and by malignancy, and less commonly by vitamin D intoxication, familial hypocalciuric hypercalcemia and by sarcoidosis. Hyperparathyroidism occurs most commonly in postmenopausal women. Hyperparathyroidism can be caused by a tumor, or adenoma, in the parathyroid gland or by increased levels of parathyroid hormone due to hypocalcemia. Approximately 10% of cancer sufferers experience hypercalcemia due to malignancy. Hypercalcemia occurs most commonly in breast cancer, lymphoma, prostate cancer, thyroid cancer, lung cancer, myeloma, and colon cancer. It may be caused by secretion of parathyroid hormone-related peptide by the tumor (which has the same action as parathyroid hormone), or may be a result of direct invasion of the bone, causing calcium release.
Symptoms of hypercalcemia include anorexia, nausea, vomiting, constipation, abdominal pain, lethargy, depression, confusion, polyuria, polydipsia and generalized aches and pains.
Albright's hereditary osteodystrophy is a form of osteodystrophy, and is classified as the phenotype of pseudohypoparathyroidism type 1A; this is a condition in which the body does not respond to parathyroid hormone.
The neuromuscular symptoms of hypocalcemia are caused by a positive bathmotropic effect due to the decreased interaction of calcium with sodium channels. Since calcium blocks sodium channels and inhibits depolarization of nerve and muscle fibers,reduced calcium lowers the threshold for depolarization. The symptoms can be recalled by the mnemonic "CATs go numb" - convulsions, arrhythmias, tetany, and numbness in the hands and feet and around the mouth.
Hypocalcaemia, also spelled hypocalcemia, is low calcium levels in the blood serum. The normal range is 2.1–2.6 mmol/L (8.8–10.7 mg/dL, 4.3–5.2 mEq/L) with levels less than 2.1 mmol/L defined as hypocalcemia. Mildly low levels that develop slowly often have no symptoms. Otherwise symptoms may include numbness, muscle spasms, seizures, confusion, or cardiac arrest.
Common causes include hypoparathyroidism and vitamin D deficiency. Others causes include kidney failure, pancreatitis, calcium channel blocker overdose, rhabdomyolysis, tumor lysis syndrome, and medications such as bisphosphonates. Diagnosis should generally be confirmed with a corrected calcium or ionized calcium level. Specific changes may be seen on an electrocardiogram (ECG).
Initial treatment for severe disease is with intravenous calcium chloride and possibly magnesium sulfate. Other treatments may include vitamin D, magnesium, and calcium supplements. If due to hypoparathyroidism, hydrochlorothiazide, phosphate binders, and a low salt diet may also be recommended. About 18% of people who are in hospital have hypocalcemia.
Bone and joint pain are common, as are limb deformities. The elevated PTH has also pleiotropic effects on the blood, immune system, and neurological system.
Secondary hyperparathyroidism (SHPT) refers to the excessive secretion of parathyroid hormone (PTH) by the parathyroid glands in response to hypocalcemia (low blood calcium levels) and associated hyperplasia of the glands. This disorder is especially seen in patients with chronic kidney failure. It is often—although not consistently—abbreviated as SHPT in medical literature.
This disorder causes neurological problems, including mental retardation, brain atrophy and ventricular dilation, myoclonus, hypotonia, and epilepsy.
It is also associated with growth retardation, megaloblastic anemia, pectus excavatum, scoliosis, vomiting, diarrhea, and hepatosplenomegaly.
Hawkinsinuria, also called 4-Alpha-hydroxyphenylpyruvate hydroxylase deficiency, is an autosomal dominant metabolic disorder affecting the metabolism of tyrosine. Normally, the breakdown of the amino acid tyrosine involves the conversion of 4-hydroxyphenylpyruvate to homogentisate by 4-Hydroxyphenylpyruvate dioxygenase. Complete deficiency of this enzyme would lead to tyrosinemia III. In rare cases, however, the enzyme is still able to produce the reactive intermediate 1,2-epoxyphenyl acetic acid, but is unable to convert this intermediate to homogentisate. The intermediate then spontaneously reacts with glutathione to form 2-L-cystein-S-yl-1,4-dihydroxy-cyclohex-5-en-1-yl acetic acid (hawkinsin).
Patients present with metabolic acidosis during the first year of life, which should be treated by a phenylalanine- and tyrosine-restricted diet. The tolerance toward these amino acids normalizes as the patients get older. Then only a chlorine-like smell of the urine indicates the presence of the condition, patients have a normal life and do not require treatment or a special diet.
The production of hawkinsin is the result of a gain-of-function mutation, inheritance of hawkinsinuria is therefore autosomal dominant (presence of a single mutated copy of the gene causes the condition). Most other inborn errors of metabolism are caused by loss-of-function mutations, and hence have recessive inheritance (condition occurs only if both copies are mutated).
Worth syndrome, also known as benign form of Worth hyperostosis corticalis generalisata with torus platinus, autosomal dominant osteosclerosis, autosomal dominant endosteal hyperostosis or Worth disease, is a rare autosomal dominant congenital disorder that is caused by a mutation in the LRP5 gene. It is characterized by increased bone density and benign bony structures on the palate.
Signs and symptoms include:
- syndromic facies
- hearing loss
- facial paralysis
Thymic hypoplasia is a condition where the thymus is underdeveloped or involuted.
Calcium levels can be used to distinguish between the following two conditions associated with thymic hypoplasia:
- 22q11.2 deletion syndrome: hypocalcemia
- Ataxia telangiectasia: normal levels of calcium
Despite this excess bone formation, people with osteopetrosis tend to have bones that are more brittle than normal. Mild osteopetrosis may cause no symptoms, and present no problems.
However, serious forms can result in...
- Stunted growth, deformity, and increased likelihood of fractures
- Patients suffer anemia, recurrent infections, and hepatosplenomegaly due to bone expansion leading to bone marrow narrowing and extramedullary hematopoiesis
- It can also result in blindness, facial paralysis, and deafness, due to the increased pressure put on the nerves by the extra bone
- Abnormal cortical bone morphology
- Abnormal form of the vertebral bodies
- Abnormality of temperature regulation
- Abnormality of the ribs
- Abnormality of vertebral epiphysis morphology
- Bone pain
- Cranial nerve paralysis
- Craniosynostosis
- Hearing impairment
- Hypocalcemia
Prenatal and neonatal diagnosis of boomerang dysplasia includes several prominent features found in other osteochondrodysplasias, though the "boomerang" malformation seen in the long bones is the delineating factor.
Featured symptoms of boomerang dysplasia include: dwarfism (a lethal type of infantile dwarfism caused by systemic bone deformities), underossification (lack of bone formation) in the limbs, spine and ilium (pelvis); proliferation of multinucleated giant-cell chondrocytes (cells that produce cartilage and play a role in skeletal development - chondrocytes of this type are rarely found in osteochondrodysplasias), brachydactyly (shortened fingers) and (undersized, shortened bones).
The characteristic "boomerang" malformation presents intermittently among random absences of long bones throughout the skeleton, in affected individuals. For example, one individual may have an absent radius and fibula, with the "boomerang" formation found in both ulnas and tibias. Another patient may present "boomerang" femora, and an absent tibia.
Children with the Sanjad Sakati syndrome have a triad of:
a) hypoparathyroidism (with episodes of hypocalcemia, hypocalcemic tetany and hypocalcemic seizures.
b) severe mental retardation and
c) dysmorphism.
Typically, children with this syndrome are born low-birth-weight due to intrauterine growth retardation. At birth, there is dysmorphism, which is later typified into the features described below. The child is stunted, often with demonstrable growth hormone deficiency and has moderate to severe mental retardation, mainly as a consequence of repeated seizures brought on by the low blood ionic calcium levels. The immuno-reactive parathormone levels are low to undetectable, with low calcium and high phosphate levels in the blood.
"Dysmorphism" is most evident on the face, with the following features:
- Long narrow face
- Deep-set, small eyes
- Beaked nose
- Large, floppy ears
- Small head (microcephaly) and
- Thin lips with a long philtrum.
Arakawa's syndrome II is an autosomal dominant metabolic disorder that causes a deficiency of the enzyme tetrahydrofolate-methyltransferase; affected individuals cannot properly metabolize methylcobalamin, a type of Vitamin B.
It is also called Methionine synthase deficiency, Tetrahydrofolate-methyltransferase deficiency syndrome, and N5-methylhomocysteine transferase deficiency.
Neonatal hypocalcemia is an abnormal clinical and laboratory hypocalcemia condition that is frequently observed in infants.[1]
Healthy term infants go through a physiological nadir of serum calcium levels at 7.5 - 8.5 mg/dL by day 2 of life. Hypocalcemia is a low blood calcium level. A total serum calcium of less than 8 mg/dL (2mmol/L) or ionized calcium less than 1.2 mmol/L in term neonates is defined as hypocalcemia. In preterm infants, it is defined as less than 7mg/dL (1.75 mmol/L) total serum calcium or less than 4mg/dL (1 mmol/L) ionized calcium. [2]
Both early onset hypocalcemia (presents within 72h of birth) and late onset hypocalcemia (presents in 3-7 days after birth) require calcium supplementation treatment.
The disease is characterized by Perthes-like pelvic anomalies (premature closure of the capital femoral epiphyses and widened femoral necks with flattened femoral heads), enchondromata and ecchondromata.
Upington disease, also called Perthes-like hip disease, enchondromata, ecchondromata, and familial dyschondroplasia, is an extremely rare autosomal dominant malformation disorder. It has only one published source claiming its existence in three generations of one family from South Africa.
Other features include:
- Stunting
- Small hands and feet with long, tapering fingers and clinodactyly
- Dental anomalies in the form of malalignment and malocclusion
In another study of six patients, the patients were investigated further. They were found to have low levels of IGF-1 and markedly retarded bone age.
Autosomal Dominant Osteopetrosis(ADO), also known as Albers-Schonberg disease. Most do not know they have this disorder because most individuals do not show any symptoms. However, the ones that do show symptoms, they will typically have a curvature of the spin(scoliosis), and multiple bone fractures. There are two types of adult osteopetrosis based on the basis of radiographic, biochemical, and clinical features.
Many patients will have bone pains. The defects are very common and include neuropathies due to the cranial nerve entrapment, osteoarthritis, carpal tunnel syndrome. About 40% of patients will experience recurrent fractures of their bones. 10% of patients will have osteomyelitis of the mandible.
Common symptoms of the disease are weakness and atrophy in the distal muscles of the lower limbs which progresses to the hands and arms, then to the trunk, neck and face. Respiratory impairment often follows.