Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Pseudohypoaldosteronism (PHA) is a condition that mimics hypoaldosteronism. However, the condition is due to a failure of "response" to aldosterone, and levels of aldosterone are actually elevated, due to a lack of feedback inhibition.
This syndrome was first described by Cheek and Perry in 1958. Later pediatric endocrinologist Aaron Hanukoglu reported that there are two independent forms of PHA with different inheritance patterns: Renal form with autosomal dominant inheritance exhibiting salt loss mainly from the kidneys, and multi-system form with autosomal recessive form exhibiting salt loss from kidney, lung, and sweat and salivary glands.
Treatment of severe forms of PHA requires relatively large amounts of sodium chloride.
These conditions also involve hyperkalemia.
Types include:
This disorder causes neurological problems, including mental retardation, brain atrophy and ventricular dilation, myoclonus, hypotonia, and epilepsy.
It is also associated with growth retardation, megaloblastic anemia, pectus excavatum, scoliosis, vomiting, diarrhea, and hepatosplenomegaly.
Nearly all individuals show multiple café au lait spots.Features common in neurofibromatosis - Lisch nodules, bone abnormalities, neurofibromas, optic pathway gliomas and malignant peripheral nerve sheath tumors - are absent in this condition Symptoms however, may include:
- Freckles
- Lipomas
- Macrocephaly
- Learning disabilities
- ADHD
- Developmental delay
Worth syndrome, also known as benign form of Worth hyperostosis corticalis generalisata with torus platinus, autosomal dominant osteosclerosis, autosomal dominant endosteal hyperostosis or Worth disease, is a rare autosomal dominant congenital disorder that is caused by a mutation in the LRP5 gene. It is characterized by increased bone density and benign bony structures on the palate.
The symptoms and/or signs of branchio-oto-renal syndrome are consistent with underdeveloped (hypoplastic) or absent kidneys with resultant renal insufficiency or renal failure. Ear anomalies include extra openings in front of the ears, extra pieces of skin in front of the ears (preauricular tags), or further malformation or absence of the outer ear (pinna). Malformation or absence of the middle ear is also possible, individuals can have mild to profound hearing loss. People with BOR may also have cysts or fistulae along the sides of their neck.
Watson syndrome is an autosomal dominant condition characterized by Lisch nodules of the ocular iris, axillary/inguinal freckling, pulmonary valvular stenosis, relative macrocephaly, short stature, and neurofibromas.
Watson syndrome is allelic to NF1, the same gene associated with neurofibromatosis type 1.
Gordon syndrome is an extremely rare disorder that belongs to a group of genetic disorders known as the distal arthrogryposes. These disorders typically involve stiffness and impaired mobility of certain joints of the lower arms and legs (distal extremities) including the knees, elbows, wrists, and/or ankles. These joints tend to be permanently fixed in a bent or flexed position (contractures). Gordon syndrome is characterized by the permanent fixation of several fingers in a flexed position (camptodactyly), abnormal bending inward of the foot (clubfoot or talipes), and, less frequently, incomplete closure of the roof of the mouth (cleft palate). In some cases, additional abnormalities may also be present. The range and severity of symptoms may vary from case to case. Gordon syndrome is inherited as an autosomal dominant trait.
Robinow noted the resemblance of affected patients' faces to that of a fetus, using the term "fetal facies" to describe the appearance of a small face and widely spaced eyes. Clinical features also may include a short, upturned nose, a prominent forehead, and a flat nasal bridge. The upper lip may be "tented", exposing dental crowding, "tongue tie", or gum hypertrophy.
Though the eyes do not protrude, abnormalities in the lower eyelid may give that impression. Surgery may be necessary if the eyes cannot close fully. In addition, the ears may be set low on the head or have a deformed pinna.
Patients suffer from dwarfism, short lower arms, small feet, and small hands. Fingers and toes may also be abnormally short and laterally or medially bent. The thumb may be displaced and some patients, notably in Turkey, experience ectrodactyly. All patients often suffer from vertebral segmentation abnormalities. Those with the dominant variant have, at most, a single butterfly vertebra. Those with the recessive form, however, may suffer from hemivertebrae, vertebral fusion, and rib anomalies. Some cases resemble Jarcho-Levin syndrome or spondylocostal dysostosis.
Genital defects characteristically seen in males include a micropenis with a normally developed scrotum and testes. Sometimes, testicles may be undescended, or the patient may suffer from hypospadias. Female genital defects may include a reduced size clitoris and underdeveloped labia minora. Infrequently, the labia majora may also be underdeveloped. Some research has shown that females may experience vaginal atresia or haematocolpos.
The autosomal recessive form of the disorder tends to be much more severe. Examples of differences are summarized in the following table:
Legius syndrome (LS) is an autosomal dominant condition characterized by cafe au lait spots. It was first described in 2007 and is often mistaken for neurofibromatosis type I (NF-1), it is caused by mutations in the SPRED1 gene, it is also known as Neurofibromatosis Type 1-like syndrome (NFLS). The condition is a RASopathy, developmental syndromes due to germline mutations in genes
The combination of muscular hypotonia and fixed dilated pupils in infancy is suspicious of Gillespie syndrome. Early onset partial aniridia, cerebellar ataxia, and mental retardation are hallmark of syndrome. The iris abnormality is specific and seems pathognomonic of Gillespie syndrome. The aniridia consisting of a superior coloboma and inferior iris hypoplasia, foveomacular dysplasia.
Atypical Gillespie syndrome associated with bilateral ptosis, exotropia, correctopia, iris hypoplasia, anterior capsular lens opacities, foveal hypoplasia, retinal vascular tortuosity, and retinal hypopigmentation.
Neurological signs ar nystagmus, mild craniofacial asymmetry, axial hypotonia, developmental delay, and mild mental retardation. Mariën P did not support the prevailing view of a global mental retardation as a cardinal feature of Gillespie syndrome but primarily reflect cerebellar induced neurobehavioral dysfunctions following disruption of the cerebrocerebellar anatomical circuitry that closely resembles the "cerebellar cognitive and affective syndrome" (CeCAS).
Congenital pulmonary stenosis and helix dysplasia can be associated.
The three most common symptoms of Opitz G/BBB syndrome (both type I & II) are hypertelorism (exceptionally wide-spaced eyes), laryngo-tracheo-esophalgeal defects (including clefts and holes in the palate, larynx, trachea and esophagus) and hypospadias (urinary openings in males not at the tip of the penis) (Meroni, Opitz G/BBB syndrome, 2012). Abnormalities in the larynx, trachea and esophagus can cause significant difficulty breathing and/or swallowing and can result in reoccurring pneumonia and life-threatening situations. Commonly, there may be a gap between the trachea and esophagus, referred to as a laryngeal cleft; which can allow food or fluid to enter the airway and make breathing and eating a difficult task.
Genital abnormalities like a urinary opening under the penis (hypospadias), undescended testes (cryptorchidism), underdeveloped scrotum and a scrotum divided into two lobes (bifid scrotum) can all be commonplace for males with the disease.
Developmental delays of the brain and nervous system are also common in both types I and II of the disease. 50% of people with Opitz G/BBB Syndrome will experience developmental delay and mild intellectual disability. This can impact motor skills, speech and learning capabilities. Some of these instances are likened to autistic spectrum disorders. Close to half of the people with Opitz G/BBB Syndrome also have a cleft lip (hole in the lip opening) and possibly a cleft palate (hole in the roof of the mouth), as well. Less than half of the people diagnosed have heart defects, imperforate anus (obstructed anal opening), and brain defects. Of all the impairments, female carriers of X-linked Type I Opitz G/BBB Syndrome usually only have ocular hypertelorism.
Gordon syndrome (GS), or distal arthrogryposis type 3, is a rare, autosomal dominant disorder characterized by cleft palate and congenital contractures of the hands and feet.
Medical conditions include frequent ear infection, hearing loss, hypotonia, developmental problems, respiratory problems, eating difficulties, light sensitivity, and esophageal reflux.
Data on fertility and the development of secondary sex characteristics is relatively sparse. It has been reported that both male and female patients have had children. Males who have reproduced have all had the autosomal dominant form of the disorder; the fertility of those with the recessive variant is unknown.
Researchers have also reported abnormalities in the renal tract of affected patients. Hydronephrosis is a relatively common condition, and researchers have theorized that this may lead to urinary tract infections. In addition, a number of patients have suffered from cystic dysplasia of the kidney.
A number of other conditions are often associated with Robinow syndrome. About 15% of reported patients suffer from congenital heart defects. Though there is no clear pattern, the most common conditions include pulmonary stenosis and atresia. In addition, though intelligence is generally normal, around 15% of patients show developmental delays.
Familial hypertriglyceridemia is an autosomal dominant condition occurring in approximately 1% of the population. Triglyceride levels, but not cholesterol, are elevated as a result of excess hepatic production of VLDL or heterozygous LPL deficiency. The condition is associated with premature coronary disease, though treatment sometimes differs from hypercholesterolemia. Affected individuals are at risk for chylomicronemia syndrome, characterized by elevated chylomicrons in the blood. They are also at risk of pancreatitis, especially when triglyceride levels exceed 1000mg/dL.
HIES often appears early in life with recurrent staphylococcal and candidal infections, pneumonias, and eczematoid skin.
- Autosomal dominant Hyper-IgE Syndrome caused by STAT3 defects, called Job Syndrome, have characteristic facial, dental, and skeletal abnormalities. Patients with STAT3 HIES may have either delay of or failure in shedding of primary teeth. The characteristic facial features are usually set by age 16. These include facial asymmetry, a prominent forehead, deep-set eyes, a broad nasal bridge, a wide, fleshy nasal tip, and mild prognathism. Additionally, facial skin is rough with prominent pores. Finally, some patients with STAT3 HIES have scoliosis, as well as bones that fracture easily.
- Autosomal recessive
Arakawa's syndrome II is an autosomal dominant metabolic disorder that causes a deficiency of the enzyme tetrahydrofolate-methyltransferase; affected individuals cannot properly metabolize methylcobalamin, a type of Vitamin B.
It is also called Methionine synthase deficiency, Tetrahydrofolate-methyltransferase deficiency syndrome, and N5-methylhomocysteine transferase deficiency.
Hawkinsinuria, also called 4-Alpha-hydroxyphenylpyruvate hydroxylase deficiency, is an autosomal dominant metabolic disorder affecting the metabolism of tyrosine. Normally, the breakdown of the amino acid tyrosine involves the conversion of 4-hydroxyphenylpyruvate to homogentisate by 4-Hydroxyphenylpyruvate dioxygenase. Complete deficiency of this enzyme would lead to tyrosinemia III. In rare cases, however, the enzyme is still able to produce the reactive intermediate 1,2-epoxyphenyl acetic acid, but is unable to convert this intermediate to homogentisate. The intermediate then spontaneously reacts with glutathione to form 2-L-cystein-S-yl-1,4-dihydroxy-cyclohex-5-en-1-yl acetic acid (hawkinsin).
Patients present with metabolic acidosis during the first year of life, which should be treated by a phenylalanine- and tyrosine-restricted diet. The tolerance toward these amino acids normalizes as the patients get older. Then only a chlorine-like smell of the urine indicates the presence of the condition, patients have a normal life and do not require treatment or a special diet.
The production of hawkinsin is the result of a gain-of-function mutation, inheritance of hawkinsinuria is therefore autosomal dominant (presence of a single mutated copy of the gene causes the condition). Most other inborn errors of metabolism are caused by loss-of-function mutations, and hence have recessive inheritance (condition occurs only if both copies are mutated).
It is characterized by recurrent "cold" staphylococcal infections, unusual eczema-like skin rashes, severe lung infections that result in pneumatoceles (balloon-like lesions that may be filled with air or pus or scar tissue) and very high concentrations of the serum antibody IgE. Inheritance can be autosomal dominant or autosomal recessive. Many patients with autosomal dominant STAT3 hyper-IgE syndrome have characteristic facial and dental abnormalities, fail to lose their primary teeth, and have two sets of teeth simultaneously.
X-linked type I Opitz G/BBB Syndrome is diagnosed on clinical findings, but those findings can vary greatly: even within the same family. Manifestations of X-linked type I are classified in the frequent/major findings and minor findings that are found in less than 50% of individuals.
The three major findings that suggest a person has X-linked Type I Opitz G/BBB Syndrome:
1. Ocular hypertelorism (~100% cases)
2. Hypospadias (85-90% cases)
3. Laryngotracheoesophageal abnormalities (60-70%)
Minor findings found in less than 50% of individuals:
1. Developmental delay (especially intellectually)
2. Cleft lip/palate
3. Congenital heart defects
4. Imperforate (blocked) anus
5. Brain defects (especially corpus callosum)
In 1989, Hogdall used ultrasonographs to diagnose X-linked Type I Opitz G/BBB Syndrome after 19 weeks of pregnancy, by identifying hypertelorism (widely-spaced eyes) and hypospadias (irregular urinary tract openings in the penis).
There is also molecular genetic testing available to identify mutations leading to Opitz G/BBB Syndrome. X-linked Type I testing must be done on MID1, since this is the only gene that is known to cause Type I Opitz G/BBB Syndrome. Two different tests can be performed: sequence analysis and deletion/duplication analysis. In the sequence analysis a positive result would detect 15-50% of the DNA sequence mutated, while a deletion/duplication positive result would find deletion or duplication of one or more exons of the entire MID1 gene.
A genetic disorder is a genetic problem caused by one or more abnormalities in the genome, especially a condition that is present from birth (congenital). Most genetic disorders are quite rare and affect one person in every several thousands or millions.
Genetic disorders may be hereditary, passed down from the parents' genes. In other genetic disorders, defects may be caused by new mutations or changes to the DNA. In such cases, the defect will only be passed down if it occurs in the germ line. The same disease, such as some forms of cancer, may be caused by an inherited genetic condition in some people, by new mutations in other people, and mainly by environmental causes in other people. Whether, when and to what extent a person with the genetic defect or abnormality will actually suffer from the disease is almost always affected by the environmental factors and events in the person's development.
Some types of recessive gene disorders confer an advantage in certain environments when only one copy of the gene is present.
All people with this disorder have at least one limb abnormality that affects bones in the wrist (carpal bones). Often, these wrist bone abnormalities can be detected only by X-ray. Affected individuals may have additional bone abnormalities that can include polydactyly, a hypoplastic thumb or a Triphalangeal thumb, partial or complete absence of bones in the forearm, an underdeveloped Humerus, and abnormalities that affect the Clavicle and Scapula. Bone abnormalities may affect each arm differently, and the left side can be affected more than the right side. In some cases, only one arm and/or hand is affected.
About 75 percent of individuals with Holt–Oram syndrome have heart problems. The most common problem is a defect in the muscular wall, or septum, that separates the right and left sides of the heart (atria). Atrial septal defects (ASD) are caused by a hole in the septum between the left and right upper chambers of the heart (atria), and ventricular septal defects (VSD) are caused by a hole in the septum between the left and right lower chambers of the heart (ventricles). Sometimes people with Holt–Oram syndrome have cardiac conduction disease, which is caused by abnormalities in the electrical system that coordinates contractions of the heart chambers. Cardiac conduction disease can lead to problems such as a slow heart rate (bradycardia) or a rapid and ineffective contraction of the heart muscles (fibrillation). Cardiac conduction disease can occur along with other heart defects (such as septal defects) or as the only heart problem in people with Holt–Oram syndrome.
Clinically, three distinct patterns of palmoplantar keratoderma may be identified: diffuse, focal, and punctate.
Branchio-oto-renal syndrome (BOR), also known as branchiootorenal syndrome or BOR syndrome, is an autosomal dominant genetic disorder involving the kidneys, ears, and neck. It often has also been described as Melnick-Fraser syndrome.
Bart syndrome is a genetic disorder characterized by the association of congenital localized absence of skin, epidermolysis bullosa, lesions of the mouth mucosa, and dystrophic nails.
Benign hereditary chorea (BHC), also known as benign familial chorea, is a rare autosomal dominant neurogenetic syndrome. It typically presents in childhood with isolated chorea. Unlike other neurogenetic causes of chorea such as Huntington's disease, BHC is not progressive, and not associated with cognitive decline or psychiatric problems in the vast majority of cases.
BHC is caused by a single-nucleotide insertion mutation in "TITF1", which encodes thyroid transcription factor 1 (TTF-1). This gene is also known as NK2 homeobox 1 (NKX2-1)
In some cases, additional developmental abnormalities of lung and thyroid tissue are found in BHC, leading to the suggested alternative name "brain-lung-thyroid syndrome".