Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Immune thrombocytopenia (ITP) is a type of thrombocytopenic purpura defined as isolated low platelet count (thrombocytopenia) with normal bone marrow and the absence of other causes of thrombocytopenia. It causes a characteristic purpuric rash and an increased tendency to bleed. Two distinct clinical syndromes manifest as an acute condition in children and a chronic condition in adults. The acute form often follows an infection and has a spontaneous resolution within two months. Chronic immune thrombocytopenia persists longer than six months with a specific cause being unknown.
ITP is an autoimmune disease with antibodies detectable against several platelet surface antigens.
ITP is diagnosed by a low platelet count in a complete blood count (a common blood test). However, since the diagnosis depends on the exclusion of other causes of a low platelet count, additional investigations (such as a bone marrow biopsy) may be necessary in some cases.
In mild cases, only careful observation may be required but very low counts or significant bleeding may prompt treatment with corticosteroids, intravenous immunoglobulin, anti-D immunoglobulin, or immunosuppressive drugs. "Refractory ITP" (not responsive to conventional treatment) may require splenectomy, the surgical removal of the spleen. Platelet transfusions may be used in severe bleeding together with a very low count. Sometimes the body may compensate by making abnormally large platelets.
Signs include the spontaneous formation of bruises (purpura) and petechiae (tiny bruises), especially on the extremities, bleeding from the nostrils and/or gums, and menorrhagia (excessive menstrual bleeding), any of which may occur if the platelet count is below 20,000 per μl. A very low count (<10,000 per μl) may result in the spontaneous formation of hematomas (blood masses) in the mouth or on other mucous membranes. Bleeding time from minor lacerations or abrasions is usually prolonged.
Serious and possibly fatal complications due to extremely low counts (<5,000 per μl) include subarachnoid or intracerebral hemorrhage (bleeding inside the skull or brain), lower gastrointestinal bleeding or other internal bleeding. An ITP patient with an extremely low count is vulnerable to internal bleeding caused by blunt abdominal trauma, as might be experienced in a motor vehicle crash. These complications are not likely when the platelet count is above 20,000 per μl.
Thrombocytopenia usually has no symptoms and is picked up on a routine full blood count (or complete blood count). Some individuals with thrombocytopenia may experience external bleeding such as nosebleeds, and/or bleeding gums. Some women may have heavier or longer periods or breakthrough bleeding. Bruising, particularly purpura in the forearms and petechiae in the feet, legs, and mucous membranes, may be caused by spontaneous bleeding under the skin.
Eliciting a full medical history is vital to ensure the low platelet count is not secondary to another disorder. It is also important to ensure that the other blood cell types, such as red blood cells and white blood cells, are not also suppressed.
Painless, round and pinpoint (1 to 3 mm in diameter) petechiae usually appear and fade, and sometimes group to form ecchymoses. Larger than petechiae, ecchymoses are purple, blue or yellow-green areas of skin that vary in size and shape. They can occur anywhere on the body.
A person with this disease may also complain of malaise, fatigue and general weakness (with or without accompanying blood loss). Acquired thrombocytopenia may be associated with a history of drug use. Inspection typically reveals evidence of bleeding (petechiae or ecchymoses), along with slow, continuous bleeding from any injuries or wounds. Adults may have large, blood-filled bullae in the mouth. If the person's platelet count is between 30,000 and 50,000/mm, bruising with minor trauma may be expected; if it is between 15,000 and 30,000/mm, spontaneous bruising will be seen (mostly on the arms and legs).
Diagnosis is done by the help of symptoms and only blood count abnormality is thrombocytopenia.
The signs and symptoms of TTP may at first be subtle and nonspecific. Many people experience an influenza-like or diarrheal illness before developing TTP. Neurological symptoms are very common and vary greatly in severity. Frequently reported symptoms include feeling very tired, confusion, and headaches. Seizures and symptoms similar to those of a stroke can also be seen.
As TTP progresses, blood clots form within small blood vessels (microvasculature), and platelets (clotting cells) are consumed. As a result, bruising, and rarely bleeding can occur. The bruising often takes the form of purpura, while the most common site of bleeding, if it occurs, is from the nose or gums. Larger bruises (ecchymoses) may also develop.
The classic presentation of TTP includes a constellation of five medical signs which classically support the clinical diagnosis of TTP, although it is unusual for patients to present with all 5 symptoms. The pentad includes:
- Fever
- Changes in mental status
- Thrombocytopenia
- Reduced kidney function
- Haemolytic anaemia (microangiopathic hemolytic anemia).
High blood pressure (hypertension) may be found on examination.
By tradition, the term idiopathic thrombocytopenic purpura is used when the cause is idiopathic. However, most cases are now considered to be immune-mediated.
Another form is thrombotic thrombocytopenic purpura.
Thrombocytopenia is a condition characterized by abnormally low levels of thrombocytes, also known as platelets, in the blood.
A normal human platelet count ranges from 150,000 to 450,000 platelets per microliter of blood. These limits are determined by the 2.5th lower and upper percentile, so values outside this range do not necessarily indicate disease. One common definition of thrombocytopenia requiring emergency treatment is a platelet count below 50,000 per microliter.
Thrombotic thrombocytopenic purpura (TTP) is a rare disorder of the blood-coagulation system, causing extensive microscopic clots to form in the small blood vessels throughout the body, resulting in low platelet counts. These small blood clots, called thrombi, can damage many organs including the kidneys, heart, brain, and nervous system. In the era before effective treatment with plasma exchange, the fatality rate was about 90%. With plasma exchange, this has dropped to 10% at six months. Because the disease generally results from antibodies that activate the immune system to inhibit the ADAMTS13 enzyme, agents that suppress the immune system, such as glucocorticoids, rituximab, cyclophosphamide, vincristine, or ciclosporin, may also be used if a relapse or recurrence follows plasma exchange. Platelets are not transfused unless the patient has a life-threatening bleed, since the transfused platelets would also quickly be consumed by thrombi formation, leading to a minimal increase in circulating platelets.
Most cases of TTP arise from autoantibody-mediated inhibition of the enzyme ADAMTS13, a metalloprotease responsible for cleaving large multimers of von Willebrand factor (vWF) into smaller units. The increase in circulating multimers of vWF increases platelet adhesion to areas of endothelial injury, particularly where arterioles and capillaries meet, which in turn results in the formation of small platelet clots called thrombi. As platelets are used up in the formation of thrombi, this then leads to a decrease in the number of overall circulating platelets, which may then cause life-threatening bleeds. The reason why the antibodies form is generally unknown for most patients, though it can be associated with some medications and autoimmune diseases such as HIV and Lupus, as well as pregnancy.
A rarer form of TTP, called Upshaw–Schulman syndrome, or "Inherited TTP," results from an autosomal recessive gene that leads to ADAMTS13 dysfunction from the time of birth, resulting in persisting large vWF multimers, which in turn results in the formation of thrombi (small platelet clots).
Red blood cells passing the microscopic clots are subjected to shear stress, which damages their membranes, leading to rupture of red blood cells within blood vessels, which in turn leads to anaemia and schistocyte formation. The presence of these blood clots in the small blood vessels reduces blood flow to organs resulting in cellular injury and end organ damage. Current therapy is based on support and plasmapheresis to reduce circulating antibodies against ADAMTS13 and replenish blood levels of the enzyme.
The clinical hallmark is haemorrhagic bullae on the mucosa of the oronasopharynx. Haemorrhage from ruptured bullae, epistaxis or gastrointestinal bleeding is severe and may cause shock and death.
Onyalai is an acute disease that results in the development of hemorrhagic lesions on oral, nasal, and subconjunctival mucous membranes and skin, including on the soles of the feet. The patient initially is not in distress, which may result in a delay of diagnosis. As the disease progresses, hematuria, melena and menorrhagia may develop. Bleeding usually persists for approximately eight days, and may recur. Approximately 80 percent of cases will develop chronic thrombocytopenia. Periodic episodes of acute hemorrhage are possible and may be severe, leading to shock and death.
Cryofibrinogenmic disease commonly begins in adults aged 40–50 years old with symptoms of the diseases occurring in the almost always affected organ, skin. Cutaneous symptoms include on or more of the following: cold contact-induced urticarial (which may be the first sign of the disease); painful episodes of finger and/or toe arterial spasms termed Ranaud phenomena; cyanosis, s palpable purpura termed Cryofibrinogenemic purpura), and a lace-like purplish discoloration termed livedo reticularis all of which occur primarily in the lower extremities but some of which may occur in the nose, ears, and buttocks; non-healing painful ulcerations and gangrene of the areas impacted by the cited symptoms. Patients also have a history of cold sensitivity (~25% of cases), arthralgia (14-58%), neuritis (7-19%), myalgia (0-14%); and overt thrombosis of arteries and veins (25-40%) which may on rare occasions involve major arteries such of those of the brain and kidney. Signs of renal involvement (proteinuria, hematuria, decreased glomerular filtration rate, and/or, rarely, renal failure) occur in 4-25% of cases. Compared to secondary cryofibrinogemia, primary crygofibrinogenemia has a higher incidence of cutaneous lesions, arthralgia, and cold sensitivity while having a far lower incidence of renal involvement. Patients with secondary cryofibrinogenemia also exhibit signs and symptoms specific to the infectious, malignant, premalignant vasculitis, and autoimmune disorders associated with their disease. While rare, individuals with cryofibrinogemic disease may experience pathological bleeding due to the consumption of blood clotting factors consequential to the formation of cryofibrinogen precipitates.
The clinical presentation of TMA, although dependent on the type, typically includes: fever, microangiopathic hemolytic anemia (see schistocytes in a blood smear), renal failure, thrombocytopenia and neurological manifestations. Generally, renal complications are particularly predominant with Shiga-toxin-associated hemolytic uremic syndrome (STx-HUS) and atypical HUS, whereas neurologic complications are more likely with TTP. Individuals with milder forms of TTP may have recurrent symptomatic episodes, including seizures and vision loss. With more threatening cases of TMA, and also as the condition progresses without treatment, multi-organ failure or injury is also possible, as the hyaline thrombi can spread to and affect the brain, kidneys, heart, liver, and other major organs.
A broad range of autoimmune diseases have been reported to be associated with cryofibrinogenemia. These diseases include systemic lupus erythematosis, Sjorgren's syndrome, rheumatoid arthritis, mixed connective tissue disease, polymyositis, dermatomyositis, systemic sclerosis, antiphospholipid antibody syndrome, Hashimoto disease, Graves disease, sarcoidosis, pyoderma gangrenosum, spondyloarthropathy, Crohn disease, and ulcerative colitis.
Clinical signs and symptoms of complement-mediated TMA can include abdominal pain, confusion, fatigue, edema (swelling), nausea/vomiting and diarrhea. aHUS often presents with malaise and fatigue, as well as microangiopathic anemia. However, severe abdominal pain and bloody diarrhea are unusual. Laboratory tests may also reveal low levels of platelets (cells in the blood that aid in clotting), elevated lactate dehydrogenase (LDH, a chemical released from damaged cells, and which is therefore a marker of cellular damage), decreased haptoglobin (indicative of the breakdown of red blood cells), anemia (low red blood cell count)/schistocytes (damaged red blood cells), elevated creatinine (indicative of kidney dysfunction), and proteinuria (indicative of kidney injury). Patients with aHUS often present with an abrupt onset of systemic signs and symptoms such as acute kidney failure, hypertension (high blood pressure), myocardial infarction (heart attack), stroke, lung complications, pancreatitis (inflammation of the pancreas), liver necrosis (death of liver cells or tissue), encephalopathy (brain dysfunction), seizure, or coma. Failure of neurologic, cardiac, kidney, and gastrointestinal (GI) organs, as well as death, can occur unpredictably at any time, either very quickly or following prolonged symptomatic or asymptomatic disease progression. For example, approximately 1 in 6 patients with aHUS initially will present with proteinuria or hematuria without acute kidney failure. Patients who survive the presenting signs and symptoms endure a chronic thrombotic and inflammatory state, which puts many of them at lifelong elevated risk of sudden blood clotting, kidney failure, other severe complications and premature death.
In diseases such as hemolytic uremic syndrome, disseminated intravascular coagulation, thrombotic thrombocytopenic purpura, and malignant hypertension, the endothelial layer of small vessels is damaged with resulting fibrin deposition and platelet aggregation. As red blood cells travel through these damaged vessels, they are fragmented resulting in intravascular hemolysis. The resulting schistocytes (red cell fragments) are also increasingly targeted for destruction by the reticuloendothelial system in the spleen, due to their narrow passage through obstructed vessel lumina. It is seen in systemic lupus erythematosus, where immune complexes aggregate with platelets, forming intravascular thrombi. Microangiopathic hemolytic anemia is also seen in cancer.
Automated analysers (the machines that perform routine full blood counts in most hospitals) are generally programmed to flag blood films that display red blood cell fragments or "schistocytes".
Frequently, the thrombocytopenia is mild and the affected neonates remain largely asymptomatic. In these cases, therapeutic interventions are not indicated. In case of severe thrombocytopenia, the neonates may exhibit hemorrhagic complication at or a few hours after delivery. The most serious complication is intracranial hemorrhage, leading to death in approximately 10% or neurologic sequelae in 20% of cases.
Symptoms usually present from the period of birth to early childhood as: nose bleeds, bruising, and/or gum bleeding. Problems later in life may arise from anything that can cause internal bleeding such as: stomach ulcers, surgery, trauma, or menstruation. Abnormality of the abdomen, Epistaxis, Menorrhagia, Purpura, Thrombocytopenia, and prolonged bleeding time have also been listed as symptoms of various Giant Platelet Disorders.
Purpura fulminans is an acute, often fatal, thrombotic disorder which manifests as blood spots, bruising and discolouration of the skin resulting from coagulation in small blood vessels within the skin and rapidly leads to skin necrosis and disseminated intravascular coagulation.
Evans syndrome is an autoimmune disease in which an individual's antibodies attack their own red blood cells and platelets. Both of these events may occur simultaneously or one may follow on from the other.
Its overall pathology resembles a combination of autoimmune hemolytic anemia and immune thrombocytopenic purpura. Autoimmune hemolytic anemia is a condition in which the red blood cells that normally carry oxygen and carbon dioxide are destroyed by an autoimmune process. Immune thrombocytopenic purpura is a condition in which platelets are destroyed by an autoimmune process. Platelets are a component of blood that contribute to the formation of blood clots in the body to prevent bleeding.
The syndrome was first described in 1951 by R. S. Evans and colleagues.
In medicine (hematology) microangiopathic hemolytic anemia (MAHA) is a microangiopathic subgroup of hemolytic anemia (loss of red blood cells through destruction) caused by factors in the small blood vessels. It is identified by the finding of anemia and schistocytes on microscopy of the blood film.
Drug-induced purpura is a skin condition that may be related to platelet destruction, vessel fragility, interference with platelet function, or vasculitis.
Giant platelet disorders can be further categorized:
- caused by auto-immune disorders, for example Immune thrombocytopenic purpura (ITP), and characterized by low platelet count, but high MPV (Mean-Platelet Volume).
- Caused by glycoprotein abnormalities: Bernard-Soulier syndrome, Velocardiofacial syndrome
- Caused by calpain defect: Montreal platelet syndrome
- Caused by alpha granules defect: Gray platelet syndrome
- Characterized by abnormal neutrophil inclusions: May-Hegglin anomaly, Sebastian syndrome
- With systemic manifestations: Hereditary macrothrombocytopenia with hearing loss, Epstein syndrome, Fechtner syndrome
- With no specific abnormalities: Mediterranean macrothrombocytopenia
- Harris platelet syndrome
Neonatal alloimmune thrombocytopenia (NAITP, NAIT, NATP or NAT) is a disease that affects babies in which the platelet count is decreased. Platelet antigens are inherited from both mother and father. is caused by antibodies specific for platelet antigens inherited from the father but which are absent in the mother. Fetomaternal transfusions (or fetomaternal hemorrhage) results in the recognition of these antigens by the mother's immune system as non-self, with the subsequent generation of allo-reactive antibodies which cross the placenta. , hence, is caused by transplacental passage of maternal platelet-specific alloantibody and rarely human leukocyte antigen () allo-antibodies (which are expressed by platelets) to fetuses whose platelets express the corresponding antigens. occurs in somewhere between 1/800 and 1/5000 live births. More recent studies of seem to indicate that it occurs in around 1/600 live births in the Caucasian population.
Onyalai is an acquired form of immune thrombocytopenia which differs clinically, epidemiologically and immunologically from idiopathic thrombocytopenic purpura.
Atypical hemolytic uremic syndrome (aHUS) is an extremely rare, life-threatening, progressive disease that frequently has a genetic component. In most cases it is caused by chronic, uncontrolled activation of the complement system, a branch of the body’s immune system that destroys and removes foreign particles. The disease affects both children and adults and is characterized by systemic thrombotic microangiopathy (TMA), the formation of blood clots in small blood vessels throughout the body, which can lead to stroke, heart attack, kidney failure, and death. The complement system activation may be due to mutations in the complement regulatory proteins (factor H, factor I, or membrane cofactor protein), or is occasionally due to acquired neutralizing autoantibody inhibitors of these complement system components, for example anti–factor H antibodies. Despite the use of supportive care, historically an estimated 33–40% of patients died or developed end-stage renal disease (ESRD) with the first clinical bout of aHUS. Including subsequent relapses, a total of approximately two-thirds (65%) of patients died, required dialysis, or had permanent renal damage within the first year after diagnosis despite plasma exchange or plasma infusion (PE/PI).
Thrombotic microangiopathy (TMA) is a pathology that results in thrombosis in capillaries and arterioles, due to an endothelial injury. It may be seen in association with thrombocytopenia, anemia, purpura and renal failure.
The classic TMAs are hemolytic uremic syndrome and thrombotic thrombocytopenic purpura. Other conditions with TMA include atypical hemolytic uremic syndrome, disseminated intravascular coagulation, scleroderma renal crisis, malignant hypertension,
antiphospholipid antibody syndrome, and drug toxicities, e.g. calcineurin inhibitor toxicity.