Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Signs and symptoms can arise suddenly and may resolve without treatment. Stress, exercise, and emotion can all result in a normal or physiological increase in heart rate, but can also, more rarely, precipitate SVT. Episodes can last from a few minutes to one or two days, sometimes persisting until treated. The rapid heart rate reduces the opportunity for the "pump" to fill between beats decreasing cardiac output and as a consequence blood pressure. The following symptoms are typical with a rate of 150–270 or more beats per minute:
- Pounding heart
- Shortness of breath
- Chest pain
- Rapid breathing
- Dizziness
- Loss of consciousness (in only the most serious cases)
For infants and toddlers, symptoms of heart arrhythmias such as SVT are more difficult to assess because of limited ability to communicate. Caregivers should watch for lack of interest in feeding, shallow breathing, and lethargy. These symptoms may be subtle and may be accompanied by vomiting and/or a decrease in responsiveness.
People with WPW are usually asymptomatic when not having a fast heart rate. However, individuals may experience palpitations, dizziness, shortness of breath, or infrequently syncope (fainting or near fainting) during episodes of supraventricular tachycardia. The telltale "delta wave" may sometimes be seen on an electrocardiogram (ECG/EKG).
While atrial flutter can sometimes go unnoticed, its onset is often marked by characteristic sensations of the heart feeling like it is beating too fast or hard. Such sensations usually last until the episode resolves, or until the heart rate is controlled.
Atrial flutter is usually well tolerated initially (a high heart rate is for most people just a normal response to exercise), however, people with other underlying heart disease (such as coronary artery disease) or poor exercise tolerance may rapidly develop symptoms, such as shortness of breath, chest pain, lightheadedness or dizziness, nausea and, in some patients, nervousness and feelings of impending doom.
Prolonged atrial flutter with fast heart rates may lead to decompensation with loss of normal heart function (heart failure). This may manifest as exercise intolerance (exertional breathlessness), difficulty breathing at night, or swelling of the legs and/or abdomen.
Junctional rhythms (if a bradycardia) can cause decreased cardiac output. Therefore, the person may exhibit signs and symptoms similar to other bradycardia such as lightheadedness, dizziness, hypotension, and syncope. This rhythm can usually be tolerated if the rate is above 50 bpm.
The main symptom of AVNRT is the sudden development of rapid regular palpitations. Often, no provoking factor is identified, although some people affected by AVNRT report developing symptoms in stressful situations, and following consumption of alcohol or caffeine.
In some cases, the onset of the fast heart is associated with a brief drop in blood pressure. When this happens, the patient may experience dizziness or rarely lose consciousness (faint). If the heart rate is very fast, and the patient has underlying coronary artery disease (obstruction of the arteries of the heart by atherosclerosis), chest pain similar to angina may be experienced; this pain is band- or pressure-like around the chest and often radiates to the left arm and angle of the left jaw. AVNRT is rarely life-threatening.
While a few seconds may not result in problems longer periods are dangerous. Short periods may occur without symptoms or present with lightheadedness, palpitations, or chest pain. Ventricular tachycardia may result in cardiac arrest and turn into ventricular fibrillation.
On an EKG, Junctional Tachycardia exhibits the following classic criteria:
- P-Waves: The p-wave may be inverted in leads II, III and V or not visible
- Narrow QRS complexes (which is consistent with non-ventricular rhythms)
It can coexist with other superventricular tachycardias due to the disassociation between the SA node and the AV node. Junctional Tachycardia can appear similar to atrioventricular nodal reentrant tachycardia.
One form is junctional ectopic tachycardia.
Type II (atypical) atrial flutter follows a significantly different re-entry pathway to type I flutter, and is typically faster, usually 340-440 beats/minute. Atypical atrial flutter rarely occurs in people who have not undergone previous heart surgery or previous catheter ablation procedures. Left atrial flutter is considered atypical and is common after incomplete left atrial ablation procedures. Atypical atrial flutter originating from the right atrium and heart's septum have also been described.
A slow rhythm (less than 60 beats/min), is labelled bradycardia. This may be caused by a slowed signal from the sinus node (sinus bradycardia), a pause in the normal activity of the sinus node (sinus arrest), or by blocking of the electrical impulse on its way from the atria to the ventricles (AV block or heart block). Heart block comes in varying degrees and severity. It may be caused by reversible poisoning of the AV node (with drugs that impair conduction) or by irreversible damage to the node. Bradycardias may also be present in the normally functioning heart of endurance athletes or other well-conditioned persons. Bradycardia may also occur in some types of seizures.
An episode of SVT may present with palpitations, dizziness, shortness of breath, or losing consciousness (fainting). The electrocardiogram (ECG) would appear as a narrow-complex SVT. Between episodes of tachycardia the affected person is likely to be asymptomatic, however, the ECG would demonstrate the classic delta wave in Wolff–Parkinson–White syndrome.
AF is usually accompanied by symptoms related to a rapid heart rate. Rapid and irregular heart rates may be perceived as palpitations or exercise intolerance and occasionally may produce anginal chest pain (if the high heart rate causes ischemia). Other possible symptoms include congestive symptoms such as shortness of breath or swelling. The arrhythmia is sometimes only identified with the onset of a stroke or a transient ischemic attack (TIA). It is not uncommon for a patient to first become aware of AF from a routine physical examination or ECG, as it often does not cause symptoms.
Since most cases of AF are secondary to other medical problems, the presence of chest pain or angina, signs and symptoms of hyperthyroidism (an overactive thyroid gland) such as weight loss and diarrhea, and symptoms suggestive of lung disease can indicate an underlying cause. A history of stroke or TIA, as well as high blood pressure, diabetes, heart failure, or rheumatic fever may indicate whether someone with AF is at a higher risk of complications. The risk of a blood clot forming in the left atrium, breaking off, and then traveling in the bloodstream can be assessed using the CHADS2 score or CHA2DS2-VASc score.
Third-degree atrioventricular block (AV block), also known as complete heart block, is a medical condition in which the impulse generated in the sinoatrial node (SA node) in the atrium of the heart does not propagate to the ventricles.
Because the impulse is blocked, an accessory pacemaker in the lower chambers will typically activate the ventricles. This is known as an "escape rhythm". Since this accessory pacemaker also activates independently of the impulse generated at the SA node, two independent rhythms can be noted on the electrocardiogram (ECG).
- The P waves with a regular P-to-P interval (in other words, a sinus rhythm) represent the first rhythm.
- The QRS complexes with a regular R-to-R interval represent the second rhythm. The PR interval will be variable, as the hallmark of complete heart block is lack of any apparent relationship between P waves and QRS complexes.
Patients with third-degree AV block typically experience severe bradycardia (an abnormally-low measured heart rate), hypotension, and at times, hemodynamic instability.
Each heart beat originates as an electrical impulse from a small area of tissue in the right atrium of the heart called the sinus node or Sino-atrial node or SA node. The impulse initially causes both atria to contract, then activates the atrioventricular (or AV) node, which is normally the only electrical connection between the atria and the ventricles (main pumping chambers). The impulse then spreads through both ventricles via the Bundle of His and the Purkinje fibres causing a synchronised contraction of the heart muscle and, thus, the pulse.
In adults the normal resting heart rate ranges from 60 to 90 beats per minute. The resting heart rate in children is much faster. In athletes, however, the resting heart rate can be as slow as 40 beats per minute, and be considered as normal.
The term sinus arrhythmia refers to a normal phenomenon of alternating mild acceleration and slowing of the heart rate that occurs with breathing in and out. It is usually quite pronounced in children and steadily decreases with age. This can also be present during meditation breathing exercises that involve deep inhaling and breath holding patterns.
It can be associated with digitalis toxicity. It may be also be due to onset of acute coronary syndrome, heart failure, conduction system diseases with enhanced automaticity, or administration of theophylline.
Accelerated idioventricular rhythm is a ventricular rhythm with a rate of between 40 and 120 beats per minute. Idioventricular means “relating to or affecting the cardiac ventricle alone” and refers to any ectopic ventricular arrhythmia. Accelerated idioventricular arrhythmias are distinguished from ventricular rhythms with rates less than 40 (ventricular escape) and those faster than 120 (ventricular tachycardia). Though some other references limit to between 60 and 100 beats per minute. It is also referred to as AIVR and "slow ventricular tachycardia."
It can be present at birth. However, it is more commonly associated with reperfusion after myocardial injury.
Supraventricular tachycardia (SVT) is an abnormally fast heart rhythm arising from improper electrical activity in the upper part of the heart. There are four main types: atrial fibrillation, paroxysmal supraventricular tachycardia (PSVT), atrial flutter, and Wolff–Parkinson–White syndrome. Symptoms may include palpitations, feeling faint, sweating, shortness of breath, or chest pain.
They start from either the atria or atrioventricular node. They are generally due to one of two mechanisms: re-entry or increased automaticity. The other type of fast heart rhythm is ventricular arrhythmias—rapid rhythms that start within the ventricle. Diagnosis is typically by electrocardiogram (ECG), holter monitor, or event monitor. Blood tests may be done to rule out specific underlying causes such as hyperthyroidism or electrolyte abnormalities.
Specific treatments depend on the type of SVT. They can include medications, medical procedures, or surgery. Vagal maneuvers or a procedure known as catheter ablation may be effective in certain types. For atrial fibrillation calcium channel blockers or beta blockers may be used. Long term some people benefit from blood thinners such as aspirin or warfarin. Atrial fibrillation affects about 25 per 1000 people, paroxysmal supraventricular tachycardia 2.3 per 1000, Wolff-Parkinson-White syndrome 2 per 1000, and atrial flutter 0.8 per 1000.
Atrial tachycardia is a type of heart rhythm problem in which the heart's electrical impulse comes from an ectopic pacemaker (that is, an abnormally located cardiac pacemaker) in the upper chambers (atria) of the heart, rather than from the sinoatrial node, the normal origin of the heart's electrical activity. Atrial tachycardias can exhibit very regular (consistent) heart rates ranging typically from 140 to 220 beats per minute.
As with any other form of tachycardia (rapid heart beat), the underlying mechanism can be either the rapid discharge of an abnormal focus, the presence of a ring of cardiac tissue that gives rise to a circle movement (reentry), or a triggered rapid rhythm due to other pathological circumstances (as would be the case with some drug toxicities, such as digoxin toxicity). Atrial tachycardia is a risk factor for atrial fibrillation, as the rapid rhythm can trigger or degrade into the lack of a rhythm. All atrial tachycardias are by definition supraventricular tachycardias.
Forms of atrial tachycardia (ATach) include multifocal atrial tachycardia (MAT), ectopic atrial tachycardia (EAT), unifocal atrial tachycardia (UAT), and paroxysmal atrial tachycardia (PAT). The taxonomy varies somewhat between users (regarding names that mean the same versus those that label subsets). The codification of the terms "first detected", "paroxysmal", "persistent", and "permanent" in the classification of atrial fibrillation should be compared for reference.
Most people with Wenckebach (Type I Mobitz) do not show symptoms. However, those that do usually display one or more of the following:
- Light-headedness
- Dizziness
- Syncope (fainting)
Presentation is similar to other forms of rapid heart rate and may be asymptomatic. Palpitations and chest discomfort are common complaints. The rapid uncoordinated heart rate may result in reduced cardiac output, with the heart being unable to provide adequate blood flow and therefore oxygen delivery to the rest of the body. Common symptoms of uncontrolled atrial fibrillation may include shortness of breath, shortness of breath when lying flat, dizziness, and sudden onset of shortness of breath during the night. This may progress to swelling of the lower extremities, a manifestation of congestive heart failure. Due to inadequate cardiac output, individuals with AF may also complain of light-headedness, may feel like they are about to faint, or may actually lose consciousness.
AF can cause respiratory distress due to congestion in the lungs. By definition, the heart rate will be greater than 100 beats per minute. Blood pressure may be variable, and often difficult to measure as the beat-by-beat variability causes problems for most digital (oscillometric) non-invasive blood pressure monitors. For this reason, when determining heart rate in AF, direct cardiac auscultation is recommended. Low blood pressure is most concerning and a sign that immediate treatment is required. Many of the symptoms associated with uncontrolled atrial fibrillation are a manifestation of congestive heart failure due to the reduced cardiac output. Respiratory rate will be increased in the presence of respiratory distress. Pulse oximetry may confirm the presence of hypoxia related to any precipitating factors such as pneumonia. Examination of the jugular veins may reveal elevated pressure (jugular venous distention). Lung exam may reveal crackles, which are suggestive of pulmonary edema. Heart exam will reveal a rapid irregular rhythm.
In cardiology a ventricular escape beat is a self-generated electrical discharge initiated by, and causing contraction of, the ventricles of the heart; normally the heart rhythm is begun in the atria of the heart and is subsequently transmitted to the ventricles. The ventricular escape beat follows a long pause in ventricular rhythm and acts to prevent cardiac arrest. It indicates a failure of the electrical conduction system of the heart to stimulate the ventricles (which would lead to the absence of heartbeats, unless ventricular escape beats occur).
A junctional escape complex is a normal response that may result from excessive vagal tone on the SA node (e.g. digoxin toxicity), a pathological slowing of the SA discharge, or a complete AV block.
Sinoatrial arrest (also known as sinus arrest or sinus pause) is a medical condition wherein the sinoatrial node of the heart transiently ceases to generate the electrical impulses that normally stimulate the myocardial tissues to contract and thus the heart to beat. It is defined as lasting from 2.0 seconds to several minutes. Since the heart contains multiple pacemakers, this interruption of the cardiac cycle generally lasts only a few seconds before another part of the heart, such as the atrio-ventricular junction or the ventricles, begins pacing and restores the heart action. This condition can be detected on an electrocardiogram (ECG) as a brief period of irregular length with no electrical activity before either the sinoatrial node resumes normal pacing, or another pacemaker begins pacing. If a pacemaker other than the sinoatrial node is pacing the heart, this condition is known as an escape rhythm. If no other pacemaker begins pacing during an episode of sinus arrest it becomes a cardiac arrest. This condition is sometimes confused with sinoatrial block, a condition in which the pacing impulse is generated, but fails to conduct through the myocardium. Differential diagnosis of the two conditions is possible by examining the exact length of the interruption of cardiac activity.
If the next available pacemaker takes over, it is in the following order:
1. Atrial escape (rate 60–80): originates within atria, not sinus node (normal P morphology is lost).
2. Junctional escape (rate 40–60): originates near the AV node; a normal P wave is not seen, may occasionally see a retrograde P wave.
3. Ventricular escape (rate 20–40): originates in ventricular conduction system; no P wave, wide, abnormal QRS.
Treatment includes stop medications that suppress the sinus node (beta blocker, Calcium channel blocker, digitalis); may need pacing.
In a first degree sinoatrial block, there is a lag between the time that the SA node fires and actual depolarization of the atria. This rhythm is not recognizable on an ECG strip because a strip does not denote when the SA node fires. It can be detected only during an electrophysiology study when a small wire is placed against the SA node from within the heart and the electrical impulses can be recorded as they leave the p-cells in the centre of the node [ see pacemaker potential ], followed by observing a delay in the onset of the p wave on the ECG.
Second degree SA blocks are broken down into two subcategories just like AV blocks are:
The first is a second degree type I, or Wenckebach block. This rhythm is irregular, and the R-R interval gets progressively smaller, while the P-R interval remains constant, until a QRS segment is dropped. Note that this is quite different from the Wenckebach AV block, in which the PR interval gets progressively longer, before the dropped QRS segment. The pause of a second degree type I is less than twice the shortest R-R interval and is not a multiple of the P-R interval. The cause is a gradual lengthening of conduction time from the SA node to the atria. The p-cells in the centre of the node produce the rhythm at a regular rate, but their conduction across the node to where it meets atrial tissue is where the slowing occurs.
A second degree type II, or sinus exit block, is a regular rhythm that may be normal or slow. It is followed by a pause that is a multiple of the P-P interval usually (2-4) . Conduction across the SA node is normal until the time of the pause when it is blocked.
A third degree sinoatrial block looks very similar to a sinus arrest. However, a sinus arrest is caused by a failure to form impulses. A third degree block is caused by failure to conduct them. The rhythm is irregular and either normal or slow. It is followed by a long pause that is not a multiple of the P-R interval. The pause ends with a P wave, instead of a junctional escape beat the way a sinus arrest would.
Ventricular tachycardia (V-tach or VT) is a type of regular and fast heart rate that arises from improper electrical activity in the ventricles of the heart. Although a few seconds may not result in problems, longer periods are dangerous. Short periods may occur without symptoms or present with lightheadedness, palpitations, or chest pain. Ventricular tachycardia may result in cardiac arrest and turn into ventricular fibrillation. Ventricular tachycardia is found initially in about 7% of people in cardiac arrest.
Ventricular tachycardia can occur due to coronary heart disease, aortic stenosis, cardiomyopathy, electrolyte problems, or a heart attack. Diagnosis is by an electrocardiogram (ECG) showing a rate of greater than 120 bpm and at least three wide QRS complexes in a row. It is classified as non-sustained versus sustained based on whether or not it lasts less than or more than 30 seconds. The term "ventricular tachycardias" refers to the group of irregular heartbeats that includes ventricular tachycardia, ventricular fibrillation, and torsades de pointes.
In those who have a normal blood pressure and strong pulse, the antiarrhythmic medication procainamide may be used. Otherwise immediate cardioversion is recommended. In those in cardiac arrest due to ventricular tachycardia cardiopulmonary resuscitation (CPR) and defibrillation is recommended. Biphasic defibrillation may be better than monophasic. While waiting for a defibrillator, a precordial thump may be attempted in those on a heart monitor who are seen going into an unstable ventricular tachycardia. In those with cardiac arrest due to ventricular tachycardia survival is about 45%. An implantable cardiac defibrillator or medications such as calcium channel blockers or amiodarone may be used to prevent recurrence.
Normally, the pacemaker of the heart that is responsible for triggering each heart beat (ventricular contraction) is the SA (Sino Atrial) node. However, if the ventricle does not receive triggering signals at a rate high enough from either the SA node or the AV (Atrioventricular) node, the ventricular myocardium itself becomes the pacemaker (escape rhythm). This is called Idioventricular Rhythm. Ventricular signals are transmitted cell-to-cell between cardiomyocytes and not by the conduction system, creating wide sometimes bizarre QRS complexes(> 0.12 sec). The rate is usually 20-40 bpm. If the rate is >40 bpm, it is called accelerated idioventricular rhythm. The rate of 20-40 is the "intrinsic automaticity" of the ventricular myocardium. It can be regarded as a physiological redundancy of the cardiac electrical system.