Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Synostosis (plural: synostoses) is fusion of two bones. It can be normal in puberty, fusion of the epiphysis, or abnormal. When synostosis is abnormal it is a type of dysostosis.
Examples of synostoses include:
- craniosynostosis – an abnormal fusion of two or more cranial bones;
- radioulnar synostosis – the abnormal fusion of the radius and ulna bones of the forearm;
- tarsal coalition – a failure to separately form all seven bones of the tarsus (the hind part of the foot) resulting in an amalgamation of two bones; and
- syndactyly – the abnormal fusion of neighboring digits.
Synostosis within joints can cause ankylosis.
Radioulnar synostosis is one of the more common failures of separation of parts of the upper limb. There are two general types: one is characterized by fusion of the radius and ulna at their proximal borders and the other is fused distal to the proximal radial epiphysis. Most cases are sporadic, congenital (due to a defect in longitudinal segmentation at the 7th week of development) and less often post-traumatic, bilateral in 60%, and more common in males. Familial cases in association with autosomal dominant transmission appear to be concentrated in certain geographic regions, such as Sicily.
The condition frequently is not noted until late childhood, as function may be normal, especially in unilateral cases. Increased wrist motion may compensate for the absent forearm motion. It has been suggested that individuals whose forearms are fixed in greater amounts of pronation (over 60 degrees) face more problems with function than those with around 20 degrees of fixation. Pain is generally not a problem, unless radial head dislocation should occur.
Most examples of radioulnar synostosis are isolated (non-syndromic). Syndromes that may be accompanied by radioulnar synostosis include X chromosome polyploidy (e.g., XXXY) and other chromosome disorders (e.g., 4p- syndrome, Williams syndrome), acrofacial dysostosis, Antley–Bixler syndrome, genitopatellar syndrome, Greig cephalopolysyndactyly syndrome, hereditary multiple osteochondromas (hereditary multiple exostoses), limb-body wall complex, and Nievergelt syndrome.
Craniosynostosis (from cranio, cranium; + syn, together; + ostosis relating to bone) is a condition in which one or more of the fibrous sutures in an infant skull prematurely fuses by turning into bone (ossification). Craniosynostosis has following kinds: scaphocephaly, trigonocephaly, plagiocephaly, anterior plagiocephaly, posterior plagiocephaly, brachycephaly, oxycephaly, pansynostosis.
All acrocephalosyndactyly syndromes show some level of limb anomalies, so it can be hard to tell them apart. However, the typical hand deformities in patients with Apert Syndrome distinguish it from the other syndromes.
The hands in patients with Apert syndrome always show four common features:
1. a short thumb with radial deviation
2. complex syndactyly of the index, long and ring finger
3. symbrachyphalangism
4. simple syndactyly of the fourth webspace
The deformity of the space between the index finger and the thumb may be variable. Based on this first webspace, we can differentiate three different types of handdeformation:
- Type I: Also called a "spade hand". The most common and least severe type of deformation. The thumb shows radial deviation and clinodactyly, but is separated from the index finger. The index, long and ring finger are fused together in the distal interphalangeal joints and form a flat palm. During the embryonic stage, the fusion has no effect on the longitudinal growth of these fingers, so they have a normal length. In the fourth webspace, we always see a simple syndactyly, either complete or incomplete.
- Type II: Also called a "spoon" or "mitten" hand. This is a more serious anomaly since the thumb is fused to the index finger by simple complete or incomplete syndactyly. Only the distal phalanx of the thumb is not joined in the osseous union with the index finger and has a separate nail. Because the fusion of the digits is at the level of the distal interphalangeal joints, a concave palm is formed. Most of the time, we see complete syndactyly of the fourth webspace.
- Type III: Also called the "hoof" or "rosebud" hand. This is the most uncommon but also most severe form of hand deformity in Apert syndrome. There is a solid osseous or cartilaginous fusion of all digits with one long, conjoined nail. The thumb is turned inwards and it is often impossible to tell the fingers apart. Usually proper imaging of the hand is very difficult, due to overlap of bones, but physical examination alone is not enough to measure the severity of deformation
Common relevant features of acrocephalosyndactyly are a high-arched palate, pseudomandibular prognathism (appearing as mandibular prognathism), a narrow palate, and crowding of the teeth.
Numerous associated abnormalities of other organ systems may be present. This heterogeneity requires comprehensive evaluation of all patients and treatment regimes that can vary from modification of activities to extensive spinal surgeries. Furthermore, it is unclear whether Klippel–Feil syndrome is a unique disease, or if it is one part of a spectrum of congenital spinal deformities. Klippel–Feil syndrome is usually diagnosed after birth.
The most common sign of the disorder is restricted mobility of the neck and upper spine. A short neck and low hairline at the back of the head may occur in some patients.
Associated abnormalities may include:
- scoliosis (side-to-side curvature of the spine), which is abnormal curving of the spine. The spine sometimes appears as a "C" or an "S"
- spina bifida, when the spinal canal and the back bone do not close completely during birth
- anomalies of the kidneys and the ribs
- cleft palate (hole in the roof of the mouth)
- dental problems (late dentition, high-risk of caries, oligo- and hypodontia)
- respiratory problems
- heart malformations
- short stature
- Duane syndrome
- Approximately 35% of patients with Klippel–Feil syndrome will also have a congenital elevation of the scapula known as Sprengel's deformity
The disorder also may be associated with abnormalities of the head and face, skeleton, sex organs, muscles, brain and spinal cord, arms, legs, fingers and heart defects. These heart defects often lead to a shortened life expectancy, the average being 35–45 years of age among males and 40–50 among females. This condition is similar to the heart failure seen in gigantism.
In 2011, a study identifying the occurrence of symptoms of 100 patients was published.
Many of the characteristic facial features (among other) of Jackson–Weiss syndrome result from the premature fusion of the skull bones. The following are some of the more common, such as:
- Preaxial foot polydactyl
- Tarsal synostosis
- Frontal bossing
- Proptosis
For unknown reasons, children born with FOP have deformed big toes, possibly missing a joint or simply presenting with a notable lump at the minor joint. The first "flare-up" that leads to the formation of FOP bones usually occurs before the age of 10. The bone growth progresses from the top downward, just as bones grow in fetuses. A child with FOP will typically develop bones starting at the neck, then on the shoulders, arms, chest area and finally on the feet.
Specifically, ossification is typically first seen in the dorsal, axial, cranial and proximal regions of the body. Later the disease progresses in the ventral, appendicular, caudal and distal regions of the body. However, it does not necessarily occur in this order due to injury-caused flare-ups. Often, the tumor-like lumps that characterize the disease appear suddenly. This condition causes loss of mobility to affected joints, including inability to fully open the mouth limiting speech and eating. Extra bone formation around the rib cage restricts the expansion of lungs and diaphragm causing breathing complications.
Since the disease is so rare, the symptoms are often misdiagnosed as cancer or fibrosis. This leads physicians to order biopsies, which can exacerbate the growth of these lumps. However, those born with FOP tend to have malformed toes or thumbs which help distinguish this disorder from other skeletal problems.
The median age of survival is 40 years with proper management. However, delayed diagnosis, trauma and infections can decrease life expectancy.
Klippel–Feil syndrome is a rare disease, initially reported in 1884 by Maurice Klippel and André Feil from France, characterized by the congenital fusion of any two of the seven cervical vertebrae.
The syndrome occurs in a heterogeneous group of patients unified only by the presence of a congenital defect in the formation or segmentation of the cervical spine. Klippel-Feil results in limited movement of the neck. Klippel–Feil syndrome is sometimes identified by shortness of the neck, but not all people with this disorder have a visibly shortened neck. Some people with the syndrome have a very low hairline.
In 1919, in his PhD thesis, André Feil suggested another classification of the syndrome encompassing not only deformation of the cervical spine but also deformation of the lumbar and thoracic spine.
In contrast to STD, the subtype spondylocostal dysostosis, or SCD features intrinsic rib anomalies, in addition to vertebral anomalies. Intrinsic rib anomalies include defects such as birfurcation, broadening and fusion that are not directly related to the vertebral anomalies (such as in STD, where extensive posterior rib fusion occurs due to segmentation defects and extreme shortening of the thoracic vertebral column). In both subtypes, the pulmonary restriction may result in pulmonary hypertension, and have other potential cardiac implications.
Spondylothoracic dysplasia, or STD, has been repeatedly described as an autosomal recessively inherited condition that results in a characteristic fan-like configuration of the ribs with minimal intrinsic rib anomalies. Infants born with this condition typically died early in life due to recurrent respiratory infections and pneumonia due to their restricted thorax. Recently, a report has documented that actual mortality associated with STD is only about 50%, with many survivors leading healthy, independent lives.
Atlanto-occipital dislocation, orthopedic decapitation, or internal decapitation describes ligamentous separation of the spinal column from the skull base. It is possible for a human to survive such an injury; however, only 30% of cases do not result in immediate death.
Pain and soft-tissue swelling are present at the distal-third radial fracture site and at the wrist joint. This injury is confirmed on radiographic evaluation. Forearm trauma may be associated with compartment syndrome. Anterior interosseous nerve (AIN) palsy may also be present, but it is easily missed because there is no sensory component to this finding. A purely motor nerve, the AIN is a division of the median nerve. Injury to the AIN can cause paralysis of the flexor pollicis longus and flexor digitorum profundus muscles to the index finger, resulting in loss of the pinch mechanism between the thumb and index finger. Galeazzi fractures are sometimes associated with wrist drop due to injury to radial nerve, extensor tendons or muscles.
The Galeazzi fracture is named after Ricardo Galeazzi (1866–1952), an Italian surgeon at the Instituto de Rachitici in Milan, who described the fracture in 1934. However, it was first described in 1842, by Cooper, 92 years before Galeazzi reported his results.
Jackson–Weiss syndrome (JWS) is a genetic disorder characterized by foot abnormalities and the premature fusion of certain bones of the skull (craniosynostosis), which prevents further growth of the skull and affects the shape of the head and face. This genetic disorder can also sometimes cause intellectual disability and crossed eyes as well, it was characterized in 1976.
The Jefferson fracture can be associated with this injury, with the C1 ring, or atlas, being fractured in several places, allowing the spine to shift forward relative to the skull base. The Hangman's fracture which is a fracture of the C2 vertebral body or dens of the cervical spine upon which the skull base sits to allow the head to rotate, can also be associated with atlanto-occipital dislocation. Despite its eponym, the fracture is not usually associated with a hanging mechanism of injury.
Individuals with Jefferson fractures usually experience pain in the upper neck but no neurological signs. The fracture may also cause damage to the arteries in the neck, resulting in lateral medullary syndrome, Horner's syndrome, ataxia, and the inability to sense pain or temperature.
In rare cases, congenital abnormality may cause the same symptoms as a Jefferson fracture.
It involves numerous anomalies including:
- Post-axial polydactyly
- Congenital heart defects (most commonly an atrial septal defect producing a common atrium, occurring in 60% of affected individuals)
- Teeth present at birth (natal teeth)
- Fingernail dysplasia
- Short-limbed dwarfism, mesomelic pattern
- Short ribs
- Cleft palate
- Malformation of the wrist bones (fusion of the hamate and capitate bones).
Some individuals have preaxial polydactyly in the feet (unilateral in one, bilateral in 13), consisting of a small extra biphalangeal toe, in most cases with an associated rudimentary extra metatarsal, lying in a soft tissue web between the hallux and second toe. In some cases, this was accompanied by hypoplasia of the head of the first metatarsal and absence of both phalanges of the hallux.
Acropectoral syndrome is an autosomal dominant skeletal dysplasia syndrome affecting the hands, feet, sternum, and lumbosacral spine. A recently proposed candidate gene for preaxial polydactyly is LMBR1, encoding a novel transmembrane receptor, which may be an upstream regulator of SHH. The LMBR1 gene is on human chromosome 7q36.
As a result of the changes to the developing embryo, the symptoms are very pronounced features, especially in the face. Low-set ears are a typical characteristic, as in all of the disorders which are called branchial arch syndromes. The reason for this abnormality is that ears on a foetus are much lower than those on an adult. During normal development, the ears "travel" upward on the head; however, in Crouzon patients, this pattern of development is disrupted. Ear canal malformations are extremely common, generally resulting in some hearing loss. In particularly severe cases, Ménière's disease may occur.
The most notable characteristic of Crouzon syndrome is craniosynostosis, as described above; however it usually presents as brachycephaly resulting in the appearance of a short and broad head. Exophthalmos (bulging eyes due to shallow eye sockets after early fusion of surrounding bones), hypertelorism (greater than normal distance between the eyes), and psittichorhina (beak-like nose) are also symptoms. Additionally, external strabismus is a common occurrence, which can be thought of as opposite from the eye position found in Down syndrome. Lastly, hypoplastic maxilla (insufficient growth of the midface) results in relative mandibular prognathism (chin appears to protrude despite normal growth of mandible) and gives the effect of the patient having a concave face. Crouzon syndrome is also associated with patent ductus arteriosus (PDA) and aortic coarctation.
For reasons that are not entirely clear, most Crouzon patients also have noticeably shorter humerus and femur bones relative to the rest of their bodies than members of the general population. A small percentage of Crouzon patients also have what is called "Type II" Crouzon syndrome, distinguished by partial syndactyly.
Fibrodysplasia ossificans progressiva (FOP) is an extremely rare connective tissue disease. The disease is caused by a mutation of the body's repair mechanism, which causes fibrous tissue (including muscle, tendon, and ligament) to be ossified spontaneously or when damaged. In many cases, injuries can cause joints to become permanently frozen in place. Surgical removal of the extra bone growths has been shown to cause the body to "repair" the affected area with even more bone.
Many of the characteristic facial features result from the premature fusion of the skull bones (craniosynostosis). The head is unable to grow normally, which leads to a high prominent forehead (turribrachycephaly), and eyes that appear to bulge (proptosis) and are wide-set (hypertelorism). In addition, there is an underdeveloped upper jaw (maxillary hypoplasia). About 50 percent of children with Pfeiffer syndrome have hearing loss, and dental problems are also common.
In people with Pfeiffer syndrome, the thumbs and first (big) toes are wide and bend away from the other digits (pollex varus and hallux varus). Unusually short fingers and toes (brachydactyly) are also common, and there may be some webbing or fusion between the digits (syndactyly).
A flexion teardrop fracture is a fracture of the anteroinferior aspect of a cervical vertebral body due to flexion of the spine along with vertical axial compression. A teardrop fracture is usually associated with a spinal cord injury, often a result of displacement of the posterior portion of the vertebral body into the spinal canal.
Crouzon syndrome is an autosomal dominant genetic disorder known as a branchial arch syndrome. Specifically, this syndrome affects the first branchial (or pharyngeal) arch, which is the precursor of the maxilla and mandible. Since the branchial arches are important developmental features in a growing embryo, disturbances in their development create lasting and widespread effects.
This syndrome is named after Octave Crouzon, a French physician who first described this disorder. He noted the affected patients were a mother and her daughter, implying a genetic basis. First called "craniofacial dysostosis", the disorder was characterized by a number of clinical features. This syndrome is caused by a mutation in the fibroblast growth factor receptor II, located on chromosome 10.
Breaking down the name, "craniofacial" refers to the skull and face, and "dysostosis" refers to malformation of bone.
Now known as Crouzon syndrome, the characteristics can be described by the rudimentary meanings of its former name. What occurs is that an infant's skull and facial bones, while in development, fuse early or are unable to expand. Thus, normal bone growth cannot occur. Fusion of different sutures leads to different patterns of growth of the skull.
Examples include: trigonocephaly (fusion of the metopic suture), brachycephaly (fusion of the coronal suture), dolichocephaly (fusion of the sagittal suture), plagiocephaly (unilateral premature closure of lambdoid and coronal sutures), oxycephaly (fusion of coronal and lambdoidal sutures), Kleeblattschaedel (premature closure of all sutures).
Pfeiffer syndrome is a very rare genetic disorder characterized by the premature fusion of certain bones of the skull which affects the shape of the head and face. In addition, the syndrome includes abnormalities of the hands (such as wide and deviated thumbs) and feet (such as wide and deviated big toes). Pfeiffer syndrome affects about 1 in 100,000 births.