Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Onset of symptoms usually occur in early adulthood and is characterized by intention tremor, progressive ataxia, convulsions, and myoclonic epileptic jerks.
Tremors usually affect one extremity, primarily the upper limb, and eventually involve the entire voluntary motor system. Overall, the lower extremity is usually disturbed less often than the upper extremity.
Additional features of the syndrome include: an unsteady gait, seizures, muscular hypotonia, reduced muscular coordination, asthenia, adiadochokinesia and errors with estimating range, direction, and force of voluntary movements. Mental deterioration can occur, however it is rare.
The main symptom of benign fasciculation syndrome is focal or widespread involuntary muscle activity (twitching), which can occur at random or specific times (or places). Presenting symptoms of benign fasciculation syndrome may include:
- Fasciculations (primary symptom)
- Blepharospasms (eye spasms)
- Generalized fatigue
- Muscle pain
- Anxiety (which can also be a cause)
- Exercise intolerance
- Globus sensation
- Paraesthesias
- Muscle cramping or spasms
Other symptoms include:
- Hyperreflexia
- Muscle stiffness
- Tremors
- Itching
- Myoclonic jerks
BFS symptoms are typically present when the muscle is at rest and are not accompanied by severe muscle weakness. In some BFS cases, fasciculations can jump from one part of the body to another. For example, it could start in a leg muscle, then in a few seconds jump to the forehead, then the abdomen, etc. Because fasciculations can occur on the head, this strongly suggests the brain as the generator due to its exclusive non-dependence on the spinal cord. (Together, the brain and spinal cord comprise the central nervous system.)
Anxiety is often caused as a result of BFS, and a lot of sufferers have hypochondria as BFS mimics symptoms of much more serious diseases such as amyotrophic lateral sclerosis (ALS).
Symptoms include:
- opsoclonus (rapid, involuntary, multivectorial (horizontal and vertical), unpredictable, conjugate fast eye movements without intersaccadic [quick rotation of the eyes] intervals)
- myoclonus (brief, involuntary twitching of a muscle or a group of muscles)
- cerebellar ataxia, both truncal and appendicular
- aphasia (a language disorder in which there is an impairment of speech and of comprehension of speech, caused by brain damage)
- mutism (a language disorder in which a person does not speak despite evidence of speech ability in the past, often part of a larger neurological or psychiatric disorder)
- lethargy
- irritability or malaise
- drooling
- strabismus (a condition in which the eyes are not properly aligned with each other)
- vomiting
- sleep disturbances
About half of all OMS cases occur in association with neuroblastoma (a cancer of the sympathetic nervous system usually occurring in infants and children).
Typically, episodic ataxia presents as bouts of ataxia induced by startle, stress, or exertion. Some patients also have continuous tremors of various motor groups, known as myokymia. Other patients have nystagmus, vertigo, tinnitus, diplopia or seizures.
NMT is a diverse disorder. As a result of muscular hyperactivity, patients may present with muscle cramps, stiffness, myotonia-like symptoms (slow relaxation), associated walking difficulties, hyperhidrosis (excessive sweating), myokymia (quivering of a muscle), fasciculations (muscle twitching), fatigue, exercise intolerance, myoclonic jerks and other related symptoms. The symptoms (especially the stiffness and fasciculations) are most prominent in the calves, legs, trunk, and sometimes the face and neck, but can also affect other body parts. NMT symptoms may fluctuate in severity and frequency. Symptoms range from mere inconvenience to debilitating. At least a third of people also experience sensory symptoms.
Episodic ataxia type-3 (EA3) is similar to EA1 but often also presents with tinnitus and vertigo. Patients typically present with bouts of ataxia lasting less than 30 minutes and occurring once or twice daily. During attacks, they also have vertigo, nausea, vomiting, tinnitus and diplopia. These attacks are sometimes accompanied by headaches and precipitated by stress, fatigue, movement and arousal after sleep. Attacks generally begin in early childhood and last throughout the patients' lifetime. Acetazolamide administration has proved successful in some patients. As EA3 is extremely rare, there is currently no known causative gene. The locus for this disorder has been mapped to the long arm of chromosome 1 (1q42).
In most cases OMS starts with an acute flare-up of physical symptoms within days or weeks, but some less obvious symptoms such as irritability and malaise may begin weeks or months earlier.
Autosomal recessive cerebellar ataxia type 1 (ARCA1) is a condition characterized by progressive problems with movement. Signs and symptoms of the disorder first appear in early to mid-adulthood. People with this condition initially experience impaired speech (dysarthria), problems with coordination and balance (ataxia), or both. They may also have difficulty with movements that involve judging distance or scale (dysmetria). Other features of ARCA1 include abnormal eye movements (nystagmus) and problems following the movements of objects with their eyes. The movement problems are slowly progressive, often resulting in the need for a cane, walker, or wheelchair.
Most cases of autosomal recessive cerebellar ataxia are early onset, usually around the age of 20. People with this type of ataxia share many characteristic symptoms including:
- frequent falls due to poor balance
- imprecise hand coordination
- postural or kinetic tremor of extremities or trunk
- dysarthria
- dysphasia
- vertigo
- diplopia
- lower extremity tendon reflexes
- dysmetria
- minor abnormalities in ocular saccades
- attention defects
- impaired verbal working memory and visuospatial skills
- Normal life expectancy
Autosomal recessive ataxias are generally associated with a loss of proprioception and vibration sense. Arreflexia is more common in autosomal recessive ataxia than autosomal dominant ataxias. Also, they tend to have more involvement outside of the nervous system. Mutations in subunit of the mitochondrial DNA polymerase (POLG) have been found to be a potential cause of autosomal recessive cerebellar ataxia.
Benign fasciculation syndrome (BFS) is a neurological disorder characterized by fasciculation (twitching) of various voluntary muscles in the body. The twitching can occur in any voluntary muscle group but is most common in the eyelids, arms, legs, and feet. Even the tongue may be affected. The twitching may be occasional or may go on nearly continuously. Usually intentional movement of the involved muscle causes the fasciculations to cease immediately, but they may return once the muscle is at rest again.
There are three main types of NMT:
- Chronic
- Monophasic (symptoms that resolve within several years of onset; postinfection, postallergic)
- Relapsing Remitting
Symptoms typically are onset in the adult years, although, childhood cases have also been observed. Common symptoms include a loss of coordination which is often seen in walking, and slurred speech. ADCA primarily affects the cerebellum, as well as, the spinal cord. Some signs and symptoms are:
Symptoms typically begin sometime between the ages of 5 to 15 years, but in Late Onset FA may occur in the 20s or 30s. Symptoms include any combination, but not necessarily all, of the following:
- Muscle weakness in the arms and legs
- Loss of coordination
- Vision impairment
- Hearing impairment
- Slurred speech
- Curvature of the spine (scoliosis)
- High plantar arches (pes cavus deformity of the foot)
- Diabetes (about 20% of people with Friedreich's ataxia develop carbohydrate intolerance and 10% develop diabetes mellitus)
- Heart disorders (e.g., atrial fibrillation, and resultant tachycardia (fast heart rate) and hypertrophic cardiomyopathy)
It presents before 22 years of age with progressive staggering or stumbling gait and frequent falling. Lower extremities are more severely involved. The symptoms are slow and progressive. Long-term observation shows that many patients reach a plateau in symptoms in the patient's early adulthood. On average, after 10–15 years with the disease, patients are usually wheelchair bound and require assistance with all activities of daily living.
The following physical signs may be detected on physical examination:
- Cerebellar: nystagmus, fast saccadic eye movements, truncal ataxia, dysarthria, dysmetria.
- Lower motor neuron lesion: absent deep tendon reflexes.
- Pyramidal: extensor plantar responses, and distal weakness are commonly found.
- Dorsal column: Loss of vibratory and proprioceptive sensation occurs.
- Cardiac involvement occurs in 91% of patients, including cardiomegaly (up to dilated cardiomyopathy), symmetrical hypertrophy, heart murmurs, and conduction defects. Median age of death is 35 years, while females have better prognosis with a 20-year survival of 100% as compared to 63% in men.
20% of cases are found in association with diabetes mellitus.
Usually beginning in one or both hands, MMN is characterized by weakness, muscle atrophy, cramping, and often profuse fasciculations (muscle twitching). The symptoms are progressive over long periods, often in a stepwise fashion, but unlike ALS are often treatable.
Sensory nerves are usually unaffected.
Wrist drop and foot drop (leading to trips and falls) are common symptoms. Other effects can include gradual loss of finger extension, leading to a clawlike appearance. Cold & hot temperatures exacerbates MMN symptoms to such an extent, unlike other neuropathies, that it is being investigated as a diagnostic tool.
Symptoms are very similar to those found in benign fasciculation syndrome and include:
- Fasciculations (Primary Symptom)
- Muscle cramping (Primary Symptom)
- Muscle pain
- Muscle Stiffness
- Generalized fatigue
- Anxiety
- Exercise intolerance
- Globus sensations
- Paraesthesias.
- Hyperreflexia
RHS type 1 is caused by the impairment of a regulatory mechanism between cerebellar and brainstem nuclei and has been associated with a wide range of diseases, including Lafora disease, dentatorubropallidoluysian atrophy, and celiac disease.
Harding ataxia, also known as Early onset cerebellar ataxia with retained reflexes (EOCARR), is an autosomal recessive cerebellar ataxia originally described by Harding in 1981. This form of cerebellar ataxia is similar to Friedreich ataxia including that it results in poor reflexes and balance, but differs in several ways, including the absence of diabetes mellitus, optic atrophy, cardiomyopathy, skeletal abnormalities, and the fact that tendon reflexes in the arms and knees remain intact. This form of ataxia is characterized by onset in the first 20 years, and is less severe than Friedreich ataxia. Additional cases were diagnosed in 1989, 1990, 1991, and 1998.
SCA6 is typified by progressive and permanent cerebellar dysfunction. These cerebellar signs include ataxia and dysarthria, likely caused by cerebellar atrophy. Prior to diagnosis and the onset of major symptoms, patients often report a feeling of "wooziness" and momentary imbalance when turning corners or making rapid movements. The age at which symptoms first occur varies widely, from age 19 to 71, but is typically between 43 and 52. Other major signs of SCA6 are the loss of vibratory and proprioceptive sensation and nystagmus.
While most patients present with these severe progressive symptoms, others, sometimes within the same family, display episodic non-progressive symptoms more similar to episodic ataxia. Still others present with symptoms common to both SCA6 and familial hemiplegic migraine.
Cerebellar ataxia can occur as a result of many diseases and presents with symptoms of an inability to coordinate balance, gait, extremity and eye movements. Lesions to the cerebellum can cause dyssynergia, dysmetria, dysdiadochokinesia, dysarthria and ataxia of stance and gait. Deficits are observed with movements on the same side of the body as the lesion (ipsilateral). Clinicians often use visual observation of people performing motor tasks in order to look for signs of ataxia.
Deep brain stimulation may provide relief from some symptoms of Benedikt syndrome, particularly the tremors associated with the disorder.
OPCA is characterized by progressive cerebellar ataxia, leading to clumsiness in body movements, veering from midline when walking, wide-based stance, and falls without signs of paralysis or weakness. Clinical presentation can vary greatly between patients, but mostly affects speech, balance and walking. Other possible neurological problems include spasmodic dysphonia, hypertonia, hyperreflexia, rigidity, dysarthria, dysphagia and neck dystonic posture.
Cramp fasciculation syndrome (CFS) is a rare peripheral nerve hyperexcitability disorder. It is more severe than the related (and common) disorder known as benign fasciculation syndrome; it causes fasciculations, cramps, pain, fatigue, and muscle stiffness similar to those seen in neuromyotonia (another related condition). Patients with CFS, like those with neuromyotonia, may also experience paresthesias.
Most cases of cramp fasciculation syndrome are idiopathic.
Cramp fasciculation syndrome is diagnosed by clinical examination and electromyography (EMG). Fasciculation is the only abnormality (if any) seen with EMG.
Cramp fasciculation syndrome is a chronic condition. Treatment options include anti-seizure medications such as carbamazepine, immunosuppressive drugs and plasmapheresis.
It is characterized by the presence of an oculomotor nerve (CN III) palsy and cerebellar ataxia including tremor and involuntary choreoathetotic movements. Neuroanatomical structures affected include CNIII nucleus, Red nucleus, corticospinal tracts, brachium conjunctivum, and the superior cerebellar peduncle decussation. It has a very similar cause, morphology and signs and symptoms to Weber's syndrome; the main difference between the two being that Weber's is more associated with hemiplegia (i.e. paralysis), and Benedikt's with hemiataxia (i.e. disturbed coordination of movements). It is also similar to Claude's syndrome, but is distinguishable in that Benedikt's has more predominant tremor and choreoathetotic movements while Claude's is more marked by the ataxia.
Autosomal dominant cerebellar ataxia (ADCA) is a form of spinocerebellar ataxia inherited in an autosomal dominant manner. ADCA is a genetically inherited condition that causes deterioration of the nervous system leading to disorder and a decrease or loss of function to regions of the body.
Degeneration occurs at the cellular level and in certain subtypes results in cellular death. Cellular death or dysfunction causes a break or faulty signal in the line of communication from the central nervous system to target muscles in the body. When there is impaired communication or a lack of communication entirely, the muscles in the body do not function correctly. Muscle control complications can be observed in multiple balance, speech, and motor or movement impairment symptoms. ADCA is divided into three types and further subdivided into subtypes known as SCAs (spinocerebellar ataxias).
The extensor Babinski reflex is usually absent. Muscle paresis/paralysis, hypotonia/atonia, and hyporeflexia/areflexia are usually seen immediately following an insult. Muscle wasting, fasciculations and fibrillations are typically signs of end-stage muscle denervation and are seen over a longer time period. Another feature is the segmentation of symptoms – only muscles innervated by the damaged nerves will be symptomatic.