Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The signs and symptoms of asbestosis typically manifest after a significant amount of time has passed following asbestos exposure, often several decades under current conditions in the US. The primary symptom of asbestosis is generally the slow onset of shortness of breath, especially with physical activity. Clinically advanced cases of asbestosis may lead to respiratory failure. When a physician listens with a stethoscope to the lungs of a person with asbestosis, they may hear inspiratory crackles.
The characteristic pulmonary function finding in asbestosis is a restrictive ventilatory defect. This manifests as a reduction in lung volumes, particularly the vital capacity (VC) and total lung capacity (TLC). The TLC may be reduced through alveolar wall thickening; however, this is not always the case. Large airway function, as reflected by FEV/FVC, is generally well preserved. In severe cases, the drastic reduction in lung function due to the stiffening of the lungs and reduced TLC may induce right-sided heart failure (cor pulmonale). In addition to a restrictive defect, asbestosis may produce reduction in diffusion capacity and a low amount of oxygen in the blood of the arteries.
Asbestosis is long term inflammation and scarring of the lungs due to asbestos. Symptoms may include shortness of breath, cough, wheezing, and chest pain. Complications may include lung cancer, mesothelioma, and pulmonary heart disease.
Asbestosis is caused by breathing in asbestos fibers. Generally it required a relatively large exposure over a long period of time. Such levels of exposure typically only occur in those who work with the material. All types of asbestos fibers are associated with concerns. It is generally recommended that currently existing asbestos be left undisturbed. Diagnosis is based upon a history of exposure together with medical imaging. It is a type of interstitial pulmonary fibrosis.
There is no specific treatment. Recommendations may include stopping smoking, influenza vaccination, pneumococcal vaccination, or oxygen therapy. Asbestosis affected about 157,000 people and resulted in 3,600 deaths in 2015. Asbestos use has been banned in a number of countries in an effort to prevent disease.
Classification of silicosis is made according to the disease's severity (including radiographic pattern), onset, and rapidity of progression. These include:
- Chronic simple silicosis: Usually resulting from long-term exposure (10 years or more) to relatively low concentrations of silica dust and usually appearing 10–30 years after first exposure. This is the most common type of silicosis. Patients with this type of silicosis, especially early on, may not have obvious signs or symptoms of disease, but abnormalities may be detected by x-ray. Chronic cough and exertional dyspnea (shortness of breath) are common findings. Radiographically, chronic simple silicosis reveals a profusion of small (<10 mm in diameter) opacities, typically rounded, and predominating in the upper lung zones.
- Accelerated silicosis: Silicosis that develops 5–10 years after first exposure to higher concentrations of silica dust. Symptoms and x-ray findings are similar to chronic simple silicosis, but occur earlier and tend to progress more rapidly. Patients with accelerated silicosis are at greater risk for complicated disease, including progressive massive fibrosis (PMF).
- Complicated silicosis: Silicosis can become "complicated" by the development of severe scarring (progressive massive fibrosis, or also known as conglomerate silicosis), where the small nodules gradually become confluent, reaching a size of 1 cm or greater. PMF is associated with more severe symptoms and respiratory impairment than simple disease. Silicosis can also be complicated by other lung disease, such as tuberculosis, non-tuberculous mycobacterial infection, and fungal infection, certain autoimmune diseases, and lung cancer. Complicated silicosis is more common with accelerated silicosis than with the chronic variety.
- Acute silicosis: Silicosis that develops a few weeks to 5 years after exposure to high concentrations of respirable silica dust. This is also known as silicoproteinosis. Symptoms of acute silicosis include more rapid onset of severe disabling shortness of breath, cough, weakness, and weight loss, often leading to death. The x-ray usually reveals a diffuse alveolar filling with air bronchograms, described as a ground-glass appearance, and similar to pneumonia, pulmonary edema, alveolar hemorrhage, and alveolar cell lung cancer.
Occupational lung diseases are occupational diseases affecting the respiratory system, including occupational asthma, black lung disease (coalworker's pneumoconiosis), chronic obstructive pulmonary disease (COPD), mesothelioma, and silicosis. Infectious lung diseases can also be acquired in an occupational context. Exposure to substances like flock and silica can cause fibrosing lung disease, whereas exposure to carcinogens like asbestos and beryllium can cause lung cancer. Occupational cases of interstitial lung disease may be misdiagnosed as COPD, idiopathic pulmonary fibrosis, or a myriad of other diseases; leading to a delay in identification of the causative agent.
Pneumoconiosis is an occupational lung disease and a restrictive lung disease caused by the inhalation of dust, often in mines and from agriculture.
In 2013, it resulted in 260,000 deaths, up from 251,000 deaths in 1990. Of these deaths, 46,000 were due to silicosis, 24,000 due to asbestosis and 25,000 due to coal workers pneumoconiosis.
Positive indications on patient assessment:
- Shortness of breath
- Chest X-ray may show a characteristic patchy, subpleural, bibasilar interstitial infiltrates or small cystic radiolucencies called honeycombing.
Pneumoconiosis in combination with multiple pulmonary rheumatoid nodules in rheumatoid arthritis patients is known as Caplan's syndrome.
Asbestosis is a fibrosing interstitial lung disease caused by exposure to forms of the mineral asbestos.
Asbestos-related diseases are disorders of the lung and pleura caused by the inhalation of asbestos fibres. Asbestos-related diseases include non-malignant disorders such as asbestosis (pulmonary fibrosis due to asbestos), diffuse pleural thickening, pleural plaques, pleural effusion, rounded atelectasis and malignancies such as lung cancer and malignant mesothelioma.
People who worked in jobs with high asbestos dust exposure are at the highest risk of developing asbestos-related disease. However, exposure to asbestos may also occur in the worker’s home due to dust that has accumulated on the worker's clothing (para-occupational exposure). Asbestos-related diseases can also occur as a result of non-occupational, environmental exposure. Asbestos was extensively used in many building materials, therefore large quantities of asbestos still remain in buildings that were built prior to the restriction of asbestos use that applies in many countries. The weathering and aging of such buildings may cause asbestos fragments to be released in the air and create a potential hazard. Anyone who disturbs the asbestos-containing material during home maintenance and renovation can be affected, although the exact risks are difficult to quantify.
Silicosis (also known as pneumonoultramicroscopicsilicovolcanoconiosis, previously miner's phthisis, grinder's asthma, potter's rot and other occupation-related names) is a form of occupational lung disease caused by inhalation of crystalline silica dust, and is marked by inflammation and scarring in the form of nodular lesions in the upper lobes of the lungs. It is a type of pneumoconiosis.
Silicosis (particularly the acute form) is characterized by shortness of breath, cough, fever, and cyanosis (bluish skin). It may often be misdiagnosed as pulmonary edema (fluid in the lungs), pneumonia, or tuberculosis.
Silicosis resulted in 46,000 deaths globally in 2013 down from 55,000 deaths in 1990.
The name "silicosis" (from the Latin "silex", or flint) was originally used in 1870 by Achille Visconti (1836–1911), prosector in the Ospedale Maggiore of Milan. The recognition of respiratory problems from breathing in dust dates to ancient Greeks and Romans. Agricola, in the mid-16th century, wrote about lung problems from dust inhalation in miners. In 1713, Bernardino Ramazzini noted asthmatic symptoms and sand-like substances in the lungs of stone cutters. With industrialization, as opposed to hand tools, came increased production of dust. The pneumatic hammer drill was introduced in 1897 and sandblasting was introduced in about 1904, both significantly contributing to the increased prevalence of silicosis.
Respiratory disease is a medical term that encompasses pathological conditions affecting the organs and tissues that make gas exchange possible in higher organisms, and includes conditions of the upper respiratory tract, trachea, bronchi, bronchioles, alveoli, pleura and pleural cavity, and the nerves and muscles of breathing. Respiratory diseases range from mild and self-limiting, such as the common cold, to life-threatening entities like bacterial pneumonia, pulmonary embolism, acute asthma and lung cancer.
The study of respiratory disease is known as pulmonology. A doctor who specializes in respiratory disease is known as a pulmonologist, a chest medicine specialist, a respiratory medicine specialist, a respirologist or a thoracic medicine specialist.
Respiratory diseases can be classified in many different ways, including by the organ or tissue involved, by the type and pattern of associated signs and symptoms, or by the cause of the disease.
Restrictive lung diseases are a category of respiratory disease characterized by a loss of lung compliance, causing incomplete lung expansion and increased lung stiffness, such as in infants with respiratory distress syndrome.
Benign asbestos pleural effusion is an exudative pleural effusion (a buildup of fluid between the two pleural layers) following asbestos exposure. It is relatively uncommon and the earliest manifestation of disease following asbestos exposure, usually occurring within 10 years from exposure. Effusions may be asymptomatic but rarely, they can cause pain, fever, and breathlessness. Effusions usually last for 3–4 months and then resolve completely. They can also progress to diffuse pleural thickening. Diagnosis relies on a compatible history of asbestos exposure and exclusion of other probable causes.
Caplan syndrome presents with cough and shortness of breath in conjunction with features of rheumatoid arthritis, such as painful joints and morning stiffness.
Examination should reveal tender, swollen metacarpophalangeal joints and rheumatoid nodules; auscultation of the chest may reveal diffuse râles that do not disappear on coughing or taking a deep breath.
Caplan syndrome is a nodular condition of the lung occurring in dust-exposed persons with either a history of rheumatoid arthritis (RA) or who subsequently develop RA within the following 5–10 years. The nodules in the lung typically occur bilaterally and peripherally, on a background of simple coal workers' pneumoconiosis. There are usually multiple nodules, varying in size from 0.5 to 5.0 cm. The nodules typically appear rapidly, often in only a few weeks. Nodules may grow, remain unchanged in size, resolve, or disappear and then reappear. They can cavitate, calcify, or develop air-fluid levels. Grossly, they can resemble a giant silicotic nodule. Histologically, they usually have a necrotic center surrounded by a zone of plasma cells and lymphocytes, and often with a peripheral inflammatory zone made of macrophages and neutrophils.
Caplan's syndrome (or Caplan disease or Rheumatoid pneumoconiosis) is a combination of rheumatoid arthritis (RA) and pneumoconiosis that manifests as intrapulmonary nodules, which appear homogenous and well-defined on chest X-ray.
May have no signs and symptoms or they may include:
- cough, but not prominent;
- chest pain (not common);
- breathing difficulty (fast and shallow);
- low oxygen saturation;
- pleural effusion (transudate type);
- cyanosis (late sign);
- increased heart rate.
It is a common misconception that atelectasis causes fever. A study of 100 post-op patients followed with serial chest X-rays and temperature measurements showed that the incidence of fever decreased as the incidence of atelectasis increased. A recent review article summarizing the available published evidence on the association between atelectasis and post-op fever concluded that there is no clinical evidence supporting this doctrine.
Atelectasis is the collapse or closure of a lung resulting in reduced or absent gas exchange. It may affect part or all of a lung. It is usually unilateral. It is a condition where the alveoli are deflated down to little or no volume, as distinct from pulmonary consolidation, in which they are filled with liquid. It is often called a collapsed lung, although that term may also refer to pneumothorax.
It is a very common finding in chest x-rays and other radiological studies, and may be caused by normal exhalation or by various medical conditions. Although frequently described as a collapse of lung tissue, atelectasis is not synonymous with a pneumothorax, which is a more specific condition that features atelectasis. Acute atelectasis may occur as a post-operative complication or as a result of surfactant deficiency. In premature neonates, this leads to infant respiratory distress syndrome.
The term uses combining forms of "atel-" + "", from , "incomplete" + ἔκτασις, "extension".
Pericardial mesothelioma is not well characterized, but observed cases have included cardiac symptoms, specifically constrictive pericarditis, heart failure, pulmonary embolism, and cardiac tamponade. They have also included nonspecific symptoms, including substernal chest pain, orthopnea (shortness of breath when lying flat), and cough. These symptoms are caused by the tumor encasing or infiltrating the heart.
In severe cases of the disease, the following signs and symptoms may be present:
- Blood clots in the veins, which may cause thrombophlebitis
- Disseminated intravascular coagulation, a disorder causing severe bleeding in many body organs
- Jaundice, or yellowing of the eyes and skin
- Low blood sugar level
- Pleural effusion
- Pulmonary emboli, or blood clots in the arteries of the lungs
- Severe ascites
If a mesothelioma forms metastases, these most commonly involve the liver, adrenal gland, kidney, or other lung.
Side effects on the lungs can be very varied, and can include signs and symptoms that are either clinical, or radiological (i.e., seen on chest X-ray or CT), or both. They can include lung inflammation (pneumonitis), secondary (in this context, indirectly caused) lung infection (pneumonia), lung fibrosis, organising pneumonia (bronchiolitis obliterans organising pneumonia, BOOP), ARDS (acute respiratory distress syndrome), solitary pulmonary mass (even including lung cancer in some cases, mainly in cases of asbestos-related lung disease, but today this is very rare, because asbestos is now completely prohibited by law in most countries), or pulmonary nodule. The diagnosis should be made by a specialist, if possible.
Pulmonary toxicity is the medical name for side effects on the lungs.
Although most cases of pulmonary toxicity in medicine are due to side effects of medicinal drugs, many cases can be due to side effects of radiation (radiotherapy). Other (non-medical) causes of pulmonary toxicity can be chemical compounds and airborne particulate matter.
Fibrothorax is diffuse fibrosis of the pleural space surrounding the lungs. It can have several causes including hemothorax, pleural effusion and tuberculosis. It may also be induced by exposure to certain substances, as with asbestos-induced diffuse pleural fibrosis. Idiopathic fibrothorax may also occur.
In fibrothorax, scar tissue is formed around the visceral pleura following inflammation due to pleural effusion or other pathology. The scar tissue lies in a sheet between the pleura, then fuses with the parietal pleura and the chest wall. Over time, generally the course of years, the fibrotic scar tissue slowly tightens, which results in the contraction of the entire hemithorax, and leaves the ribs immobilized. Within the chest, the lung is compressed and unable to expand, making it vulnerable to collapse. At the microscopic level, the scar tissue is composed of collagen fibers deposited in a basket weave pattern. The treatment for fibrothorax is decortication, the surgical removal of the fibrous layer of scar tissue. However, since many of the diseases and conditions resulting in fibrothorax are treatable, prevention remains the preferred method of managing fibrothorax.
A pleural effusion is excess fluid that accumulates in the pleural cavity, the fluid-filled space that surrounds the lungs. This excess can impair breathing by limiting the expansion of the lungs. Various kinds of pleural effusion, depending on the nature of the fluid and what caused its entry into the pleural space, are hydrothorax (serous fluid), hemothorax (blood), urinothorax (urine), chylothorax (chyle), or pyothorax (pus). A pneumothorax is the accumulation of air in the pleural space, and is commonly called a "collapsed lung."
Various methods can be used to classify pleural fluid.
By the origin of the fluid:
- Serous fluid (hydrothorax)
- Blood (haemothorax)
- Chyle (chylothorax)
- Pus (pyothorax or empyema)
- Urine (urinothorax)
By pathophysiology:
- Transudative pleural effusion
- Exudative pleural effusion
By the underlying cause (see next section).
Tumor-like disorders of the lung pleura are a group of conditions that on initial radiological studies might be confused with malignant lesions. Radiologists must be aware of these conditions in order to avoid misdiagnosing patients. Examples of such lesions are: pleural plaques, thoracic splenosis, catamenial pneumothorax, pleural pseudotumor, diffuse pleural thickening, diffuse pulmonary lymphangiomatosis and Erdheim-Chester Disease.
Exposure to asbestos fibers reach the pleura of the lungs through the lymphatic channels or blood stream. Historically, ship builders and insulation workers are at greater risk.
Affected persons are usually asymptomatic.
On radiological studies, pleural plaques are visualized using conventional chest x-rays and computed tomography scans (CT scans). The locations of the lesions are mostly in the parietal pleura of the lungs, especially in the posterior/lateral regions of the thorax, diaphragmatic domes, and lung fissures. In some cases, calcifications are also evident, especially with CT scans.
No treatment is required since pleural plaques are benign. However, studies have demonstrated that pleural plaques are an independent risk factor for developing bronchogenic carcinoma and/or mesothelioma.