Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Almost all spiders are venomous, but not all spider bites result in the injection of venom. Pain from non-venomous, so-called "dry bites" typically lasts for 5 to 60 minutes while pain from envenomating spider bites may last for longer than 24 hours. Bleeding also may occur with a bite. Signs of a bacterial infection due to a spider bite occur infrequently (0.9%).
A study of 750 definite spider bites in Australia indicated that 6% of spider bites cause significant effects, the vast majority of these being redback spider bites causing significant pain lasting more than 24 hours. Activation of the sympathetic nervous system can lead to sweating, high blood pressure and gooseflesh.
Most recluse spider bites are minor with little or no necrosis. However, a small number of bites produce necrotic skin lesions. First pain and tenderness at the site begin. The redness changes over two to three days to a bluish sinking patch of dead skin—the hallmark of necrosis. The wound heals slowly over months but usually completely. Rarely, bites may cause widespread symptoms, with occasional fatalities.
A spider bite, also known as arachnidism, is an injury resulting from the bite of a spider. The effects of most bites are not serious. Most bites result in mild symptoms around the area of the bite. Rarely they may produce a necrotic skin wound or severe pain.
Most spiders do not cause bites that are of importance. For a bite to be significant, substantial envenomation is required. Bites from the widow spiders involve a neurotoxic venom which produces a condition known as latrodectism. Symptoms may include: pain which may be at the bite or involve the chest and abdomen, sweating, muscle cramps and vomiting among others. Bites from the recluse spiders cause the condition loxoscelism, in which local necrosis of the surrounding skin and widespread breakdown of red blood cells may occur. Headaches, vomiting and a mild fever may also occur. Other spiders that can cause significant bites include: the Australian funnel-web spider and South American wandering spider.
Efforts to prevent bites include clearing clutter and the use of pesticides. Most spider bites are managed with supportive care such as nonsteroidal anti-inflammatory drugs (including ibuprofen) for pain and antihistamines for itchiness. Opioids may be used if the pain is severe. While an antivenom exists for black widow spider venom, it is associated with anaphylaxis and therefore not commonly used in the United States. Antivenom against funnel web spider venom improves outcomes. Surgery may be required to repair the area of injured skin from some recluse bites.
Spider bites may be overdiagnosed or misdiagnosed. In many reports of spider bites it is unclear if a spider bite actually occurred. Historically a number of conditions were attributed to spider bites. In the Middle Ages a condition claimed to arise from spider bites was tarantism, where people danced wildly. While necrosis has been attributed to the bites of a number of spiders, good evidence only supports this for recluse spiders.
The most common symptom of all snakebites is overwhelming fear, which contributes to other symptoms, including nausea and vomiting, diarrhea, vertigo, fainting, tachycardia, and cold, clammy skin. Television, literature, and folklore are in part responsible for the hype surrounding snakebites, and people may have unwarranted thoughts of imminent death.
Dry snakebites and those inflicted by a non-venomous species can still cause severe injury. There are several reasons for this: a snakebite may become infected, with the snake's saliva and fangs sometimes harboring pathogenic microbial organisms, including "Clostridium tetani". Infection is often reported with viper bites whose fangs are capable of deep puncture wounds. Bites may cause anaphylaxis in certain people.
Most snakebites, whether by a venomous snake or not, will have some type of local effect. There is minor pain and redness in over 90 percent of cases, although this varies depending on the site. Bites by vipers and some cobras may be extremely painful, with the local tissue sometimes becoming tender and severely swollen within five minutes. This area may also bleed and blister and can eventually lead to tissue necrosis. Other common initial symptoms of pit viper and viper bites include lethargy, bleeding, weakness, nausea, and vomiting. Symptoms may become more life-threatening over time, developing into hypotension, tachypnea, severe tachycardia, severe internal bleeding, altered sensorium, kidney failure, and respiratory failure.
Bites caused by some snakes, such as the kraits, coral snake, Mojave rattlesnake, and the speckled rattlesnake, reportedly cause little or no pain despite being serious potentially life-threatening injuries. Those bitten may also describe a "rubbery", "minty", or "metallic" taste if bitten by certain species of rattlesnake. Spitting cobras and rinkhalses can spit venom in a person's eyes. This results in immediate pain, ophthalmoparesis, and sometimes blindness.
Some Australian elapids and most viper envenomations will cause coagulopathy, sometimes so severe that a person may bleed spontaneously from the mouth, nose, and even old, seemingly healed wounds. Internal organs may bleed, including the brain and intestines and will cause ecchymosis (bruising) of the skin.
Venom emitted from elapids, including sea snakes, kraits, cobras, king cobra, mambas, and many Australian species, contain toxins which attack the nervous system, causing neurotoxicity. The person may present with strange disturbances to their vision, including blurriness. Paresthesia throughout the body, as well as difficulty in speaking and breathing, may be reported. Nervous system problems will cause a huge array of symptoms, and those provided here are not exhaustive. If not treated immediately they may die from respiratory failure.
Venom emitted from some types of cobras, almost all vipers and some sea snakes causes necrosis of muscle tissue. Muscle tissue will begin to die throughout the body, a condition known as rhabdomyolysis. Rhabdomyolysis can result in damage to the kidneys as a result of myoglobin accumulation in the renal tubules. This, coupled with hypotension, can lead to acute renal failure, and, if left untreated, eventually death.
Many species of arthropods (insects, arachnids and others) regularly or occasionally bite or sting human beings. Insect saliva contains anticoagulants and enzymes that cause local irritation and allergic reactions. Insect venoms can be delivered by their stingers, which often are modified ovipositors, or by their mouthparts. Insect, spider and scorpion venom can cause serious injury or death. Dipterans account for the majority of insect bites, while hymenopterans account for the majority of stings. Among arachnids spider bites are the most common. Arthropods bite or sting humans for a number of reasons including feeding or defense. Arthropods are major vectors of human disease, with the pathogens typically transmitted by bites.
Serious infestations and chronic attacks can cause anxiety, stress, and insomnia. Development of refractory delusional parasitosis is possible, as a person develops an overwhelming obsession with bed bugs.
Individual responses to bites vary, ranging from no visible effect (in about 20–70%), to small macular spots, to prominent wheals and bullae formations along with intense itching that may last several days. The bites often occur in a line. A central hemorrhagic spot may also occur due to the release of anticoagulants in the saliva.
Symptoms may not appear until some days after the bites have occurred. Reactions often become more brisk after multiple bites due to possible sensitization to the salivary proteins of the bed bug. The skin reaction usually occurs in the area of the bite which is most commonly the arms, shoulders and legs as they are more frequently exposed at night. Numerous bites may lead to an erythematous rash or urticaria.
A bite of "Latrodectus" may not inject any venom (known as a dry bite) and so no illness occurs. About 75% of "wet" bites will have localized pain and nothing more. If, however, there is a substantial dose, a bite can cause latrodectism. The main symptoms are generalized muscle pain, stomach cramps, nausea and vomiting.
Initially a pinprick or burning sensation can be felt when bitten by widow spiders. If there was enough venom injected, pain worsens over the next hour. The area will develop localized sweating and gooseflesh piloerection. The pain may spread and become generalized.
The typical duration is three to six days. Some people who do not receive antivenom may feel unwell, be weak, and have muscle pain for weeks.
Cat bites are usually considered as minor injuries but can result in serious infection. Not all infections that can be obtained from exposure to a cat are transmitted through a cat bite, like plague.
The diagnosis is aided by obtaining a history of the circumstances surrounding the bite. The time the bite was experienced, the location of the bite, and examination of the bite is noted. The person may have drainage from the site of the bite. They may also be febrile. Swelling may also occur. Because the wound from the bite may have healed over the punctures, the wound it may be opened and explored. The site is anesthetized prior to exploration of the wound for is examined for damage. Neurovascular status is assessed. Immune status may determine treatment as does
the presence of transplanted tissue or organs, rheumatic disease, diabetes, HIV/AIDS and sickle cell disease.
Swollen glands (lymph nodes) and red streaks radiating upward may be evident.
The diagnosis of a cat with rabies is evident by observing the cat. Cats with rabies may also appear restless, pant, and attack other animals, people, or objects. Animals with rabies typically die within a few days of appearing sick. Vaccination of the cat can prevent rabies being transmitted by the cat through a bite. If the cat is suspected of being infected with rabies, the person begins treatment with rabies vaccine.
Latrodectism is the illness caused by the bite of "Latrodectus" spiders (the black widow spider and related species). Pain, muscle rigidity, vomiting, and sweating are the symptoms of latrodectism. Contrary to popular conception, latrodectism is very rarely fatal to people though domestic cats have been known to die with convulsion and paralysis.
There are several spider species all named black widow: southern black widow spider ("L. mactans"), the European black widow ("L. tredecimguttatus"), Western black widow spider ("L. hesperus"), Northern black widow spider ("L. variolus"). Other "Latrodectus" that cause latrodectism are the Australian redback spider ("L. hasselti"), and the New Zealand katipo spider ("L. katipo"). Several other members of "Latrodectus" genus are not commonly associated with latrodectism including the cosmopolitan brown widow ("L. geometricus").
The histomorphologic appearance of insect bites is usually characterized by a wedge-shaped superficial dermal perivascular infiltrate consisting of abundant lymphocytes and scattered eosinophils. This appearance is non-specific, i.e. it may be seen in a number of conditions including:
- Drug reactions,
- Urticarial reactions,
- Prevesicular early stage of bullous pemphigoid, and
- HIV related dermatoses.
Feeding bites have characteristic patterns and symptoms, a function of the feeding habits of the offending pest and the chemistry of its saliva.
A snakebite is an injury caused by the bite of a snake, especially a venomous snake. A common symptom of a bite from a venomous snake is the presence of two puncture wounds from the animal's fangs. Sometimes venom injection from the bite may occur. This may result in redness, swelling, and severe pain at the area, which may take up to an hour to appear. Vomiting, trouble seeing, tingling of the limbs, and sweating may result. Most bites are on the hands or arms. Fear following a bite is common with symptoms of a racing heart and feeling faint. The venom may cause bleeding, kidney failure, a severe allergic reaction, tissue death around the bite, or breathing problems. Bites may result in the loss of a limb or other chronic problems. The outcome depends on the type of snake, the area of the body bitten, the amount of venom injected, and the health conditions of the person. Problems are often more severe in children than adults, due to their smaller size.
Snakes bite both as a method of hunting and as a means of protection. Risk factors for bites include working outside with one's hands such as in farming, forestry, and construction. Snakes commonly involved in poisonings include elapids (such as kraits, cobras and mambas), vipers, and sea snakes. The majority of snake species do not have venom and kill their prey by squeezing them. Venomous snakes can be found on every continent except Antarctica. Determining the type of snake that caused a bite is often not possible. The World Health Organization says snakebites are a "neglected public health issue in many tropical and subtropical countries".
Prevention of snake bites can involve wearing protective footwear, avoiding areas where snakes live, and not handling snakes. Treatment partly depends on the type of snake. Washing the wound with soap and water and holding the limb still is recommended. Trying to suck out the venom, cutting the wound with a knife, or using a tourniquet is not recommended. Antivenom is effective at preventing death from bites; however, antivenoms frequently have side effects. The type of antivenom needed depends on the type of snake involved. When the type of snake is unknown, antivenom is often given based on the types known to be in the area. In some areas of the world getting the right type of antivenom is difficult and this partly contributes to why they sometimes do not work. An additional issue is the cost of these medications. Antivenom has little effect on the area around the bite itself. Supporting the person's breathing is sometimes also required.
The number of venomous snakebites that occur each year may be as high as five million. They result in about 2.5 million poisonings and 20,000 to 125,000 deaths. The frequency and severity of bites vary greatly among different parts of the world. They occur most commonly in Africa, Asia, and Latin America, with rural areas more greatly affected. Deaths are relatively rare in Australia, Europe and North America. For example, in the United States, about seven to eight thousand people per year are bitten by venomous snakes (about one in 40 thousand people) and about five people die (about one death per 65 million people).
Loxoscelism may present with local and whole-body symptoms:
- Necrotic cutaneous loxoscelism is the medical term for the reaction most common in loxoscelism. It is characterized by a localized gangrenous slough at the site of bite. The majority of "Loxosceles" bites result in minor skin irritation that heals in one week. Severe reactions, while rare, may produce painful ulcerative lesions up to across. Such lesions often heal within 6 to 8 weeks, and can leave lasting scars.
- Viscerocutaneous loxoscelism refers to the combination of local and systemic manifestations that occur infrequently after "Loxosceles" bites. Symptoms include low energy, nausea and vomiting, and fever. Destruction of blood cells (hemolytic anemia) may require transfusion and injure the kidney. Consumption of clotting factors (so-called disseminated intravascular coagulation ["DIC"]) and destruction of platelets (thrombocytopenia) is reported most often in children. DIC may lead to dangerous bleeding. Occasionally, acute kidney failure may develop from myonecrosis and rhabdomyolysis, leading to coma.
A canine vector-borne disease (CVBD) is one of "a group of globally distributed and rapidly spreading illnesses that are caused by a range of pathogens transmitted by arthropods including ticks, fleas, mosquitoes and phlebotomine sandflies." CVBDs are important in the fields of veterinary medicine, animal welfare, and public health. Some CVBDs are of zoonotic concern.
Many CVBD infect humans as well as companion animals. Some CVBD are fatal; most can only be controlled, not cured. Therefore, infection should be avoided by preventing arthropod vectors from feeding on the blood of their preferred hosts. While it is well known that arthropods transmit bacteria and protozoa during blood feeds, viruses are also becoming recognized as another group of transmitted pathogens of both animals and humans.
Some "canine vector-borne pathogens of major zoonotic concern" are distributed worldwide, while others are localized by continent. Listed by vector, some such pathogens and their associated diseases are the following:
- Phlebotomine sandflies (Psychodidae): "Leishmania amazonensis", "L. colombiensis", and "L. infantum" cause visceral leishmaniasis (see also canine leishmaniasis). "L. braziliensis" causes mucocutaneous leishmaniasis. "L. tropica" causes cutaneous leishmaniasis. "L. peruviana" and "L. major" cause localized cutaneous leishmaniasis.
- Triatomine bugs (Reduviidae): "Trypanosoma cruzi" causes trypanosomiasis (Chagas disease).
- Ticks (Ixodidae): "Babesia canis" subspecies ("Babesia canis canis", "B. canis vogeli", "B. canis rossi", and "B. canis gibsoni" cause babesiosis. "Ehrlichia canis" and "E. chaffeensis" cause monocytic ehrlichiosis. "Anaplasma phagocytophilum" causes granulocytic anaplasmosis. "Borrelia burgdorferi" causes Lyme disease. "Rickettsia rickettsii" causes Rocky Mountain spotted fever. "Rickettsia conorii" causes Mediterranean spotted fever.
- Mosquitoes (Culicidae): "Dirofilaria immitis" and "D. repens" cause dirofilariasis.
A tick infestation is a condition where a tick acts as an ectoparasite.
It is sometimes thought of as an animal disease. In humans, the primary concern from tick bites is often not the ectoparasitism itself, but the potential for the tick to transmit disease or tick paralysis. Still, in certain populations, it is possible for tick infestation to be clinically significant.
There is some evidence that "Ixodes ricinus" infected with "Borrelia burgdorferi" may become more efficient at infestation.
Home remedies (such as vaseline or matches) have been used in the past, but are not currently recommended.
Cryptosporidiosis is a parasitic disease that is transmitted through contaminated food or water from an infected person or animal. Cryptosporidiosis in cats is rare, but they can carry the protozoan without showing any signs of illness. Cryptosporidiosis can cause profuse, watery diarrhea with cramping, abdominal pain, and nausea in people. Illness in people is usually self-limiting and lasts only 2–4 days, but can become severe in people with weakened immune systems. Cryptosporidiosis (Cryptosporidium spp.) Cats transmit the protozoan through their feces. The symptoms in people weight loss and chronic diarrhea in high-risk patients. More than one species of this genus can be acquired by people. Dogs can also transmit this parasite.
Loxoscelism () is a condition occasionally produced by the bite of the recluse spiders (genus "Loxosceles"). The area becomes dusky and a deep open sore forms as the skin around the bite dies (necrosis). It is the only proven type of necrotic arachnidism in humans. While there is no known therapy effective for loxoscelism, there has been research on antibiotics, surgical timing, hyperbaric oxygen, potential antivenoms and vaccines. Because of the number of diseases that may mimic loxoscelism, it is frequently misdiagnosed by physicians.
Loxoscelism was first described in the United States in 1879 in Tennessee. Although there are up to 13 different "Loxosceles" species in North America (11 native and two nonnative), "Loxosceles reclusa" is the species most often involved in serious envenomation. "Loxosceles reclusa" has a limited habitat that includes the Southeast United States. In South America, "L. laeta", "L. intermedia" (found in Brazil and Argentina), and "L. gaucho" (Brazil) are the three species most often reported to cause necrotic bites.
Pulicosis (also known as "flea bites") is a skin condition caused by several species of fleas, including the cat flea ("Ctenocephalides felis") and dog flea ("Ctenocephalides canis"). This condition can range from mild irritation to severe irritation. In some cases, 48 to 72 hours after being bitten, a more severe rash-like irritation may begin to spread across the body. Symptoms include swelling of the bitten area, erythema, ulcers of the mouth and throat, restlessness, and soreness of the areolae. In extreme cases, within 1 week after being bitten, the condition may spread through the lymph nodes and begin affecting the central nervous system. Permanent nerve damage can occur.
If they receive an excessive number of bites, pets can also develop flea allergy dermatitis, which can potentially be fatal if no actions are taken. However, dogs and cats are not the only ones that are at risk. Humans can suffer from flea bites and, depending on a variety of factors, the bites can cause much pain and discomfort.
Cats are reservoirs and are able to transmit mycotic infections. Cats, especially kittens can pass on a Ringworm infection to people. Ringworm is a fungal disease and approximately 40 types of fungi can cause ringworm. They are typically of the "Trichophyton", "Microsporum", or "Epidermophyton" type. It gets its name from the characteristic ring-like rash on the skin. The disease is spread by touching an infected cat. The rash may be scaly, reddened, and circular. Ringworm on the scalp usually makes a bald patch of scaly skin. Long-haired cats do not always show signs of ringworm infection. Kittens with ringworm have patches that are hairless, circular, or irregularly shaped areas of scaling, crusting, and redness that may or may not be itchy. The area may not be completely hairless, and instead have brittle, broken hairs. If the claws are affected, they may have a whitish, opaque appearance with shredding of the claw's surface.
Sporotrichosis is a fungal disease that is transmitted by mostly outdoor cats.
Filariasis is a parasitic disease caused by an infection with roundworms of the Filarioidea type. These are spread by blood-feeding black flies and mosquitoes. This disease belongs to the group of diseases called helminthiases.
Eight known filarial nematodes use humans as their definitive hosts. These are divided into three groups according to the niche they occupy in the body:
- Lymphatic filariasis is caused by the worms "Wuchereria bancrofti", "Brugia malayi", and "Brugia timori". These worms occupy the lymphatic system, including the lymph nodes; in chronic cases, these worms lead to the syndrome of "elephantiasis".
- Subcutaneous filariasis is caused by "Loa loa" (the eye worm), "Mansonella streptocerca", and "Onchocerca volvulus". These worms occupy the subcutaneous layer of the skin, in the fat layer. "L. loa" causes "Loa loa" filariasis, while "O. volvulus" causes river blindness.
- Serous cavity filariasis is caused by the worms "Mansonella perstans" and "Mansonella ozzardi", which occupy the serous cavity of the abdomen. "Dirofilaria immitis", or the dog heartworm rarely infects humans.
The adult worms, which usually stay in one tissue, release early larval forms known as microfilariae into the host's bloodstream. These circulating microfilariae can be taken up with a blood meal by the arthropod vector; in the vector, they develop into infective larvae that can be transmitted to a new host.
Individuals infected by filarial worms may be described as either "microfilaraemic" or "amicrofilaraemic", depending on whether microfilariae can be found in their peripheral blood. Filariasis is diagnosed in microfilaraemic cases primarily through direct observation of microfilariae in the peripheral blood. Occult filariasis is diagnosed in amicrofilaraemic cases based on clinical observations and, in some cases, by finding a circulating antigen in the blood.
The period between infection and the first symptoms (incubation period) is typically 1–3 months in humans. Incubation periods as short as four days and longer than six years have been documented, depending on the location and severity of the contaminated wound and the amount of virus introduced. Initial signs and symptoms of rabies are often nonspecific such as fever and headache. As rabies progresses and causes inflammation of the brain and/or meninges, signs and symptoms can include slight or partial paralysis, anxiety, insomnia, confusion, agitation, abnormal behavior, paranoia, terror, and hallucinations, progressing to delirium, and coma. The person may also have hydrophobia.
Death usually occurs 2 to 10 days after first symptoms. Survival is rare once symptoms have presented, even with the administration of proper and intensive care. Jeanna Giese, who in 2004 was the first patient treated with the Milwaukee protocol, became the first person ever recorded to have survived rabies without receiving successful post-exposure prophylaxis. An intention-to-treat analysis has since found this protocol has a survival rate of about 8%.
Symptoms of illness are specific to the type of viral infection and vary on severity, based on the individuals infected.
Symptoms vary on severity, from mild unnoticeable symptoms to more common symptoms like fever, rash, headache, achy muscle and joints, and conjunctivitis. Symptoms can last several days to weeks, but death resulting from this infection is rare.
Three stages of rabies are recognized in dogs and other animals.
1. The first stage is a one- to three-day period characterized by behavioral changes and is known as the prodromal stage.
2. The second stage is the excitative stage, which lasts three to four days. It is this stage that is often known as "furious rabies" due to the tendency of the affected animal to be hyperreactive to external stimuli and bite at anything near.
3. The third stage is the paralytic stage and is caused by damage to motor neurons. Incoordination is seen due to rear limb paralysis and drooling and difficulty swallowing is caused by paralysis of facial and throat muscles. This disables the victim's ability to swallow, which causes saliva to pour from the mouth also the reason bites are the most clear way for the infection to spread is because the virus is most concentrated in the throat and cheeks causing major contamination to saliva. Death is usually caused by respiratory arrest.