Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Signs and symptoms include early satiety, nausea, vomiting, extreme "stabbing" postprandial abdominal pain (due to both the duodenal compression and the compensatory reversed peristalsis), abdominal distention/distortion, burping (eructation), external hypersensitivity or tenderness of the abdominal area, reflux, and heartburn. In infants, feeding difficulties and poor weight gain are also frequent symptoms.
In some cases of SMA syndrome, severe malnutrition accompanying spontaneous wasting may occur. This, in turn, increases the duodenal compression, which worsens the underlying cause, creating a cycle of worsening symptoms.
"Food fear" is a common development among patients with the chronic form of SMA syndrome. For many, symptoms are partially relieved when in the left lateral decubitus or knee-to-chest position, or in the prone (face down) position. A Hayes maneuver (pressure applied below the umbilicus in cephalad and dorsal direction) elevates the root of the SMA, also slightly easing the constriction. Symptoms can be aggravated when leaning to the right or taking a supine (face up) position.
Patients with MALS reportedly experience abdominal pain, particularly in the epigastrium, which may be associated with eating and which may result in anorexia and weight loss.The pain can be in the left or right side, but usually where the ribs meet. Other signs are persistent nausea, lassitude (especially after a heavy meal) and exercise intolerance. Diarrhea is a common symptom, some experience constipation. While some experience vomiting, not everyone does. Exercise or certain postures can aggravate the symptoms. Occasionally, physical examination reveals an abdominal bruit in the mid-epigastrium.
Complications of MALS result from chronic compression of the celiac artery. They include gastroparesis and aneurysm of the pancreaticoduodenal arteries.
Superior mesenteric artery (SMA) syndrome is a gastro-vascular disorder in which the third and final portion of the duodenum is compressed between the abdominal aorta (AA) and the overlying superior mesenteric artery. This rare, potentially life-threatening syndrome is typically caused by an angle of 6°–25° between the AA and the SMA, in comparison to the normal range of 38°–56°, due to a lack of retroperitoneal and visceral fat (mesenteric fat). In addition, the aortomesenteric distance is 2–8 millimeters, as opposed to the typical 10–20. However, a narrow SMA angle alone is not enough to make a diagnosis, because patients with a low BMI, most notably children, have been known to have a narrow SMA angle with no symptoms of SMA syndrome.
SMA syndrome was first described in 1861 by Carl Freiherr von Rokitansky in victims at autopsy, but remained pathologically undefined until 1927 when Wilkie published the first comprehensive series of 75 patients. According to a 1956 study, only 0.3% of patients referred for an upper-gastrointestinal-tract barium studies fit this diagnosis, making it one of the rarest gastrointestinal disorders known to medical science. Recognition of SMA syndrome as a distinct clinical entity is controversial, due in part to its possible confusion with a number of other conditions, though it is now widely acknowledged.
SMA syndrome is also known as Wilkie's syndrome, cast syndrome, mesenteric root syndrome, chronic duodenal ileus and intermittent arterio-mesenteric occlusion.
It is distinct from Nutcracker syndrome, which is the entrapment of the left renal vein between the AA and the SMA, although it is possible to be diagnosed with both conditions.
It is estimated that in 10-24% of normal, asymptomatic individuals the median arcuate ligament crosses in front of (anterior to) the celiac artery, causing some degree of compression. Approximately 1% of these individuals exhibit severe compression associated with symptoms of MALS. The syndrome most commonly affects individuals between 20 and 40 years old, and is more common in women, particularly thin women.
NCS is associated with hematuria (which can lead to anemia) and abdominal pain (classically left flank or pelvic pain).
Since the left gonadal vein drains via the left renal vein it can also result in left testicular pain in men or left lower quadrant pain in women. Nausea and vomiting can result due to compression of the splanchnic veins. An unusual manifestation of NCS includes varicocele formation and varicose veins in the lower limbs. Another clinical study has shown that nutcracker syndrome is a frequent finding in varicocele-affected patients and possibly, nutcracker syndrome should be routinely excluded as a possible cause of varicocele and pelvic congestion.
The nutcracker syndrome (NCS) results most commonly from the compression of the left renal vein between the abdominal aorta (AA) and superior mesenteric artery (SMA), although other variants exist. The name derives from the fact that, in the sagittal plane and/or transverse plane, the SMA and AA (with some imagination) appear to be a nutcracker crushing a nut (the renal vein).
There is a wide spectrum of clinical presentations and diagnostic criteria are not well defined, which frequently results in delayed or incorrect diagnosis.
This condition is not to be confused with superior mesenteric artery syndrome, which is the compression of the third portion of the duodenum by the SMA and the AA.
Patients (often infants) present acutely with midgut volvulus, manifested by bilious vomiting, crampy abdominal pain, abdominal distention, and the passage of blood and mucus in their stools. Patients with chronic, uncorrected malrotation can have recurrent abdominal pain and vomiting.
Malrotation can also be asymptomatic.
Aortocaval compression syndrome is compression of the abdominal aorta and inferior vena cava by the gravid uterus when a pregnant woman lies on her back, i.e. in the supine position. It is a frequent cause of low maternal blood pressure (hypotension), which can be result in loss of consciousness and in extreme circumstances fetal demise.
Aortocaval compression is thought to be the cause of supine hypotensive syndrome. Supine hypotensive syndrome is characterized by pallor, tachycardia, sweating, nausea, hypotension and dizziness and occurs when a pregnant woman lies on her back and resolves when she is turned on her side.
The aorta and inferior vena cava are central vessels, the largest artery and vein. They supply blood to the heart, and the rest of the body. Thus, when there is compression due to the weight of the fetus, signs of shock (sweating, pallor, fast and weak pulse) may be experienced. Patients should be placed in a left lateral recumbent position and emergency help summoned immediately.
Intestinal malrotation is a congenital anomaly of rotation of the midgut (embryologically, the gut undergoes a complex rotation outside the abdomen). As a result:
- the small bowel is found predominantly on the right side of the abdomen
- the cecum is displaced (from its usual position in the right lower quadrant) into the epigastrium - right hypochondrium
- the ligament of Treitz is displaced inferiorly and rightward
- fibrous bands (of Ladd) course over the vertical portion of the duodenum (DII), causing intestinal obstruction.
- the small intestine has an unusually narrow base, and therefore the midgut is prone to volvulus (a twisting that can obstruct the mesenteric blood vessels and cause intestinal ischemia).
In medicine, Valentino's syndrome is pain presenting in the right lower quadrant of the abdomen caused by a duodenal ulcer with perforation through the retroperitoneum.
It is named after Rudolph Valentino who presented with right lower quadrant pain which turned out to be perforated peptic ulcer. He subsequently died from an infection inspite of surgery to repair the perforation. The pain is caused by gastric and duodenal fluids that tend to settle in the right paracolic gutter causing peritonitis and RLQ pain.
Patients with perforated Valentino's syndrome usually present with a sudden onset of severe, sharp abdominal pain which is reminiscent of appendicitis. Most patients describe generalized pain; a few present with severe epigastric pain. As even slight movement can tremendously worsen their pain, these patients assume a fetal position. Abdominal examination usually discloses generalized tenderness, rebound tenderness, guarding, and rigidity. However, the degree of peritoneal findings is strongly influenced by a number of factors, including the size of perforation, amount of bacterial and gastric contents contaminating the abdominal cavity, time between perforation and presentation, and spontaneous sealing of perforation.
These patients may also demonstrate signs and symptoms of septic shock, such as tachycardia, hypotension, and anuria. Not surprisingly, these indicators of shock may be absent in elderly or immunocompromised patients or in those with diabetes. Patients should be asked if retching and vomiting occurred before the onset of pain.
IVCS presents with a wide variety of signs and symptoms, making it difficult to diagnose clinically.
- Edema of the lower extremities (peripheral edema), caused by an increase in the blood pressure in the veins.
- Tachycardia. This is caused by the decreased preload, causing the heart to increase its frequency.
- In pregnant women, signs of fetal hypoxia and distress may be seen in the cardiotocography. This is caused by decreased perfusion of the uterus, resulting in hypoxemia of the fetus.
- Supine hypotensive syndrome
In medicine, May-Thurner syndrome (MTS), also known as the iliac vein compression syndrome, is a rare condition in which compression of the common venous outflow tract of the left lower extremity may cause discomfort, swelling, pain or blood clots, called deep venous thrombosis (DVT), in the iliofemoral vein.
The specific problem is compression of the left common iliac vein by the overlying right common iliac artery. This leads to pooling or stasis of blood, predisposing the individual to the formation of blood clots. Uncommon variations of MTS have been described, such as the right common iliac vein getting compressed by the right common iliac artery.
In the 21st century the May-Thurner syndrome definition has been expanded to a broader disease profile known as nonthrombotic iliac vein lesions (NIVL) which can involve both the right and left iliac veins as well as multiple other named venous segments. This syndrome frequently manifests as pain when the limb is dependent (hanging down the edge of a bed/chair) and/or significant swelling of the whole limb.
May-Thurner syndrome (MTS) is thought to represent between two and five percent of lower-extremity venous disorders. May-Thurner syndrome is often unrecognized; however, current estimates are that this condition is three times more common in women than in men. The classic syndrome typically presents in the second to fourth decades of life. In the 21st century in a broader disease profile, the syndrome acts as a permissive lesion and becomes symptomatic when something else happens such as, following trauma, a change in functional status such as swelling following orthopaedic joint replacement.
It is important to consider May-Thurner syndrome in patients who have no other obvious reason for hypercoagulability and who present with left lower extremity thrombosis. To rule out other causes for hypercoagulation, it may be appropriate to check the antithrombin, protein C, protein S, factor V Leiden, and prothrombin G20210A.
Venography will demonstrate the classical syndrome when causing deep venous thrombosis.
May-Thurner syndrome in the broader disease profile known as nonthrombotic iliac vein lesions (NIVLs) exists in the symptomatic ambulatory patient and these lesions are usually not seen by venography. Morphologically, intravascular ultrasound (IVUS) has emerged as the best current tool in the broader sense. Functional testing such as duplex ultrasound, venous and interstitial pressure measurement and plethysmography may sometimes be beneficial. Compression of the left common iliac vein may be seen on pelvic CT.
Klippel–Trénaunay syndrome (KTS or KT), formerly Klippel–Trénaunay–Weber syndrome and sometimes angioosteohypertrophy syndrome and hemangiectatic hypertrophy, is a rare congenital medical condition in which blood vessels and/or lymph vessels fail to form properly. The three main features are nevus flammeus (port-wine stain), venous and lymphatic malformations, and soft-tissue hypertrophy of the affected limb. It is similar to, though distinctly separate from, the less common Parkes-Weber syndrome.
The classical triad of Klippel-Trenaunay syndrome consists of:
1. vascular malformations of the capillary, venous and lymphatic vessels;
2. varicosities of unusual distribution, particularly the lateral venous anomaly; and
3. unilateral soft and skeletal tissue hypertrophy, usually the lower extremity.
The birth defect is diagnosed by the presence of a combination of these symptoms (often on approximately ¼ of the body, though some cases may present more or less affected tissue):
- One or more distinctive port-wine stains with sharp borders
- Varicose veins
- Hypertrophy of bony and soft tissues, that may lead to local gigantism or shrinking, most typically in the lower body/legs.
- An improperly developed lymph system
In some cases, port-wine stains (capillary port wine type) may be absent. Such cases are very rare and may be classified as "atypical Klippel–Trenaunay syndrome".
KTS can either affect blood vessels, lymph vessels, or both. The condition most commonly presents with a mixture of the two. Those with venous involvement experience increased pain and complications, such as venous ulceration in the lower extremities.
Those with large AVMs are at risk of formation of blood clots in the vascular lesion, which may migrate to the lungs (pulmonary embolism). If there is large-volume blood flow through the lesion, "high-output heart failure" may develop due to the inability of the heart to generate sufficient cardiac output.
Inferior vena cava syndrome (IVCS) is a result of obstruction of the inferior vena cava. It can be caused by invasion or compression by a pathological process or by thrombosis in the vein itself. It can also occur during pregnancy.Pregnancy can lead to problems with blood return due to high venous pressure in the lower limbs, failure of blood return to the heart, decreased cardiac output due to obstructions in inferior vena cava, sudden rise in venous pressure which can lead to placental separation, and a decrease in renal function. All of these issues can arise from lying in the supine position during late pregnancy which can cause compression of the inferior vena cava. Symptoms of late pregnancy inferior vena cava syndrome consist of intense pain in the right hand side, muscle twitching, drop of blood pressure, and fluid retention.
Underlying causes include gastric ulcers, duodenal ulcers, appendicitis, gastrointestinal cancer, diverticulitis, inflammatory bowel disease, superior mesenteric artery syndrome, trauma and ascariasis. Typhoid fever, non-steroidal anti-inflammatory drugs, ingestion of corrosives may also be responsible.
Signs and symptoms may include a sudden pain in the epigastrium to the right of the midline indicating the perforation of a duodenal ulcer. In a gastric ulcer perforation creates a history of burning pain in epigastrium, with flatulence and dyspepsia.
In intestinal perforation, pain starts from the site of perforation and spreads across the abdomen.
Gastrointestinal perforation results in severe abdominal pain intensified by movement, nausea, vomiting and hematemesis. Later symptoms include fever and or chills. In any case, the abdomen becomes rigid with tenderness and rebound tenderness. After some time the abdomen becomes silent and heart sounds can be heard all over. Patient stops passing flatus and motion, abdomen is distended.
The symptoms of esophageal rupture may include sudden onset of chest pain.
TOS affects mainly the upper limbs, with signs and symptoms manifesting in the shoulders, neck, arms and hands. Pain can be present on an intermittent or permanent basis. It can be sharp/stabbing, burning, or aching. TOS can involve only part of the hand (as in the pinky and adjacent half of the ring finger), all of the hand, or the inner aspect of the forearm and upper arm. Pain can also be in the side of the neck, the pectoral area below the clavicle, the armpit/axillary area, and the upper back (i.e., the trapezius and rhomboid area). Discoloration of the hands, one hand colder than the other hand, weakness of the hand and arm muscles, and tingling are commonly present.
TOS is often the underlying cause of refractory upper limb conditions like frozen shoulder and carpal tunnel syndrome that frequently defy standard treatment protocols. TOS can be related to Forward head posture.
A painful, swollen and blue arm, particularly when occurring after strenuous physical activity, could be the first sign of a subclavian vein compression related with an unknown TOS and complicated by thrombosis (blood clots), the so-called Paget–Schroetter syndrome or effort-induced thrombosis.
TOS can be related to cerebrovascular arterial insufficiency when affecting the subclavian artery. It also can affect the vertebral artery, in which case it could produce vision disturbances, including transient blindness, and embolic cerebral infarction.
TOS can also lead to eye problems and vision loss as a circumstance of vertebral artery compression. Although very rare, if compression of the brain stem is also involved in an individual presentation of TOS, transient blindness may occur while the head is held in certain positions.
If left untreated, TOS can lead to neurological deficits as a result of the hypoperfusion and hypometabolism of certain areas of the brain and cerebellum.
Posterior spinal artery syndrome is much rarer than its anterior counterpart as the white matter structures that are present are much less vulnerable to ischemia since they have a better blood supply. When posterior spinal artery syndrome does occur, dorsal columns are damaged and ischemia may spread into the posterior horns. Clinically the syndrome presents as a loss of tendon reflexes and loss of joint position sense
Shortness of breath is the most common symptom, followed by face or arm swelling.
Following are frequent symptoms:
- Difficulty breathing
- Headache
- Facial swelling
- Venous distention in the neck and distended veins in the upper chest and arms
- Upper limb edema
- Lightheadedness
- Cough
- Edema (swelling) of the neck, called the "collar of Stokes"
- Pemberton's sign
Superior vena cava syndrome usually presents more gradually with an increase in symptoms over time as malignancies increase in size or invasiveness.
Transient ischemic attacks (TIAs) rarely affect the spinal cord and usually affect the brain; however, cases have been documented in these areas. Spinal ateriovenous malformations are the main cause and are represented later in this article. However, TIAs can result from emboli in calcific aortic disease and aortic coarctation.
The diagnosis is suspected based on polyhydramnios in uteru, bilious vomiting, failure to pass meconium in the first day of life, and abdominal distension. The presentations of NBO may vary. It may be subtle and easily overlooked on physical examination or can involve massive abdominal distension, respiratory distress and cardiovascular collapse. Unlike older children, neonates with unrecognized intestinal obstruction deteriorate rapidly.
Mirizzi's syndrome is a rare complication in which a gallstone becomes impacted in the cystic duct or neck of the gallbladder causing compression of the common bile duct (CBD) or common hepatic duct, resulting in obstruction and jaundice. The obstructive jaundice can be caused by direct extrinsic compression by the stone or from fibrosis caused by chronic cholecystitis (inflammation). A cholecystocholedochal fistula can occur.
Prognosis is usually very good, although complications are more likely to occur when there are serious congenital anomalies. Late complications may occur in about 12 percent of patients with duodenal atresia, and the mortality rate for these complications is 6 percent.