Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The symptoms of pulmonary hypertension include the following:
Less common signs/symptoms include non-productive cough and exercise-induced nausea and vomiting. Coughing up of blood may occur in some patients, particularly those with specific subtypes of pulmonary hypertension such as heritable pulmonary arterial hypertension, Eisenmenger syndrome and chronic thromboembolic pulmonary hypertension. Pulmonary venous hypertension typically presents with shortness of breath while lying flat or sleeping (orthopnea or paroxysmal nocturnal dyspnea), while pulmonary arterial hypertension (PAH) typically does not.
Other typical signs of pulmonary hypertension include an accentuated pulmonary component of the second heart sound, a right ventricular third heart sound, and parasternal heave indicating a hypertrophied right atrium. Signs of systemic congestion resulting from right-sided heart failure include jugular venous distension, ascites, and hepatojugular reflux. Evidence of tricuspid insufficiency and pulmonic regurgitation is also sought and, if present, is consistent with the presence of pulmonary hypertension.
According to WHO classification there are 5 groups of PH, where Group I (pulmonary arterial hypertension) is further subdivided into Group I' and Group I" classes. The most recent WHO classification system (with adaptations from the more recent ESC/ERS guidelines shown in italics) can be summarized as follows:
WHO Group I – Pulmonary arterial hypertension (PAH)
- Idiopathic
- Heritable (BMPR2, ALK1, SMAD9, caveolin 1, KCNK3 mutations)
- Drug- and toxin-induced (e.g., methamphetamine use)
- Associated conditions:Connective tissue disease, HIV infection, Portal hypertension, Congenital heart diseases, Schistosomiasis
WHO Group I' – Pulmonary veno-occlusive disease (PVOD), pulmonary capillary hemangiomatosis (PCH)
- Idiopathic
- Heritable (EIF2AK4 mutations)
- Drugs, toxins and radiation-induced
- Associated conditions:connective tissue disease, HIV infection
WHO Group I" – Persistent pulmonary hypertension of the newborn
WHO Group II – Pulmonary hypertension secondary to left heart disease
- Left ventricular Systolic dysfunction
- Left ventricular Diastolic dysfunction
- Valvular heart disease
- Congenital/acquired left heart inflow/outflow tract obstruction and congenital cardiomyopathy
- Congenital/acquired pulmonary venous stenosis
WHO Group III – Pulmonary hypertension due to lung disease, chronic hypoxia
- Chronic obstructive pulmonary disease (COPD)
- Interstitial lung disease
- Mixed restrictive and obstructive pattern pulmonary diseases
- Sleep-disordered breathing
- Alveolar hypoventilation disorders
- Chronic exposure to high altitude
- Developmental abnormalities
WHO Group IV – chronic arterial obstruction
- Chronic thromboembolic pulmonary hypertension (CTEPH)
- Other pulmonary artery obstructions
- Angiosarcoma or other tumor within the blood vessels
- Arteritis
- Congenital pulmonary artery stenosis
- Parasitic infection (hydatidosis)
WHO Group V – Pulmonary hypertension with unclear or multifactorial mechanisms
- Hematologic diseases: chronic hemolytic anemia (including sickle cell disease)
- Systemic diseases: sarcoidosis, pulmonary Langerhans cell histiocytosis: lymphangioleiomyomatosis, neurofibromatosis, vasculitis
- Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid diseases
- Others: pulmonary tumoral thrombotic microangiopathy, fibrosing mediastinitis, chronic kidney failure, segmental pulmonary hypertension (pulmonary hypertension restricted to one or more lobes of the lungs)
Clinical symptoms and signs are often non-specific or absent in early CTEPH, with signs of right heart failure only in advanced disease. The main symptom of CTEPH is exertional breathlessness (shortness of breath during exertion such as exercise), which is unspecific and may often be attributed to other, more common, diseases by physicians. When present, the clinical symptoms of CTEPH may resemble those of acute PE, or of idiopathic pulmonary arterial hypertension (iPAH). Leg oedema (swelling) and haemoptysis (blood in mucus) occur more often in CTEPH, while syncope (fainting) is more common in iPAH.
Chronic thromboembolic pulmonary hypertension (CTEPH) is a long-term disease caused by a blockage in the blood vessels that deliver blood from the heart to the lungs (pulmonary arteries), resulting in increased pressure in these arteries (pulmonary hypertension). The blockage either results from a hardened blood clot that is thought to originate from the deep veins of the body (thromboembolism) and remains in the arteries, or from a scar that forms at the site where the clot has damaged the arteries, causing permanent fibrous obstruction (blood flow blockage). Most patients have a combination of microvascular (small vessel) and macrovascular (large vessel) obstruction. Some patients may present with normal or near-normal pulmonary pressures at rest despite symptomatic disease. These patients are labelled as having chronic thromboembolic disease (CTED).
Diagnosis is based on findings obtained after at least 3 months of effective anticoagulation therapy (blood thinners) in order to discriminate this condition from ‘subacute’ pulmonary embolism (blood clot in the lungs, PE). Diagnostic findings for CTEPH are:
1. Invasively (i.e., in the blood) measured mean pulmonary arterial pressure (mPAP) ≥25 mmHg;
2. Mismatched perfusion defects on lung ventilation/perfusion (V/Q) scan and specific diagnostic signs for CTEPH seen by multidetector computed tomography angiography (MDCT), magnetic resonance imaging (MRI) or conventional pulmonary cineangiography (PAG), such as ring-like stenoses, webs/slits, chronic total occlusions (pouch lesions, or tapered lesions) and tortuous lesions.
Portopulmonary hypertension (PPH) is defined by the coexistence of portal and pulmonary hypertension. PPH is a serious complication of liver disease, present in 0.25 to 4% of all patients suffering from cirrhosis. Once an absolute contraindication to liver transplantation, it is no longer, thanks to rapid advances in the treatment of this condition. Today, PPH is comorbid in 4-6% of those referred for a liver transplant.
PPH presents roughly equally in male and female cirrhotics; 71% female in an American series and 57% male in a larger French series. Typically, patients present in their fifth decade, aged 49 +/- 11 years on average.
In general, PPH is diagnosed 4–7 years after the patient is diagnosed with portal hypertension and in roughly 65% of cases, the diagnosis is actually made at the time of invasive hemodynamic monitoring following anesthesia induction prior to liver transplantation.
Once patients are symptomatic, they present with right heart dysfunction secondary to pulmonary hypertension and its consequent dyspnea, fatigue, chest pain and syncope. Patients tend to have a poor cardiac status, with 60% having stage III-IV NYHA heart failure.
PPH is actually independent of the severity of cirrhosis but may be more common in specific types of cirrhosis, in one series more so in Autoimmune Hepatitis and less in Hepatitis C cirrhosis, while in another it was equally distributed throughout the diagnoses.
Symptoms may begin quickly or slowly depending on the size of the embolus and how much it blocks the blood flow. Symptoms of embolisation in an organ vary with the organ involved but commonly include:
- Pain in the involved body part
- Temporarily decreased organ function
Later symptoms are closely related to infarction of the affected tissue. This may cause permanently decreased organ function.
For example, symptoms of myocardial infarction mainly include chest pain, dyspnea, diaphoresis (an excessive form of sweating), weakness, light-headedness, nausea, vomiting, and palpitations.
Symptoms of limb infarction include coldness, decreased or no pulse beyond the site of blockage, pain, muscle spasm, numbness and tingling, pallor and muscle weakness, possibly to the grade of paralysis in the affected limb.
"Total anomalous pulmonary venous connection", also known as "total anomalous pulmonary venous drainage" and "total anomalous pulmonary venous return", is a rare cyanotic congenital heart defect in which all four pulmonary veins are malpositioned and make anomalous connections to the systemic venous circulation. (Normally, pulmonary veins return oxygenated blood from the lungs to the left atrium where it can then be pumped to the rest of the body). A patent foramen ovale, patent ductui arteriosa or an atrial septal defect "must" be present, or else the condition is fatal due to a lack of systemic blood flow.
In some cases, it can be detected prenatally.
There are four variants: Supracardiac (50%): blood drains to one of the innominate veins (brachiocephalic veins) or the superior vena cava; Cardiac (20%), where blood drains into coronary sinus or directly into right atrium; Infradiaphragmatic (20%), where blood drains into portal or hepatic veins; and a mixed (10%) variant.
TAPVC can occur with "obstruction", which occurs when the anomalous vein enters a vessel at an acute angle and can cause pulmonary venous hypertension and cyanosis because blood cannot enter the new vein as easily.
Arterial emboli often occur in the legs and feet. Some may occur in the brain, causing a stroke, or in the heart, causing a heart attack. Less common sites include the kidneys, intestines, and eyes.
Anomalous pulmonary venous connection (or anomalous pulmonary venous drainage or anomalous pulmonary venous return) is a congenital defect of the pulmonary veins.
Hypertension with certain specific additional signs and symptoms may suggest secondary hypertension, i.e. hypertension due to an identifiable cause. For example, Cushing's syndrome frequently causes truncal obesity, glucose intolerance, moon face, a hump of fat behind the neck/shoulder (referred to as a buffalo hump), and purple abdominal stretch marks. Hyperthyroidism frequently causes weight loss with increased appetite, fast heart rate, bulging eyes, and tremor. Renal artery stenosis (RAS) may be associated with a localized abdominal bruit to the left or right of the midline (unilateral RAS), or in both locations (bilateral RAS). Coarctation of the aorta frequently causes a decreased blood pressure in the lower extremities relative to the arms, or delayed or absent femoral arterial pulses. Pheochromocytoma may cause abrupt ("paroxysmal") episodes of hypertension accompanied by headache, palpitations, pale appearance, and excessive sweating.
Hypertension is rarely accompanied by symptoms, and its identification is usually through screening, or when seeking healthcare for an unrelated problem. Some with high blood pressure report headaches (particularly at the back of the head and in the morning), as well as lightheadedness, vertigo, tinnitus (buzzing or hissing in the ears), altered vision or fainting episodes. These symptoms, however, might be related to associated anxiety rather than the high blood pressure itself.
On physical examination, hypertension may be associated with the presence of changes in the optic fundus seen by ophthalmoscopy. The severity of the changes typical of hypertensive retinopathy is graded from I–IV; grades I and II may be difficult to differentiate. The severity of the retinopathy correlates roughly with the duration or the severity of the hypertension.
A paradoxical embolism, also called a crossed embolism, refers to an embolus which is carried from the venous side of circulation to the arterial side, or vice versa. It is a kind of stroke or other form of arterial thrombosis caused by embolism of a thrombus (blood clot), air, tumor, fat, or amniotic fluid of venous origin, which travels to the arterial side through a lateral opening in the heart, such as a patent foramen ovale, or arteriovenous shunts in the lungs.
The opening is typically an atrial septal defect, but can also be a ventricular septal defect.
Paradoxical embolisms represent two percent of arterial emboli.
The most common symptom of pulmonary edema is difficulty breathing, but may include other symptoms such as coughing up blood (classically seen as pink, frothy sputum), excessive sweating, anxiety, and pale skin. Shortness of breath can manifest as orthopnea (inability to lie down flat due to breathlessness) and/or paroxysmal nocturnal dyspnea (episodes of severe sudden breathlessness at night). These are common presenting symptoms of chronic pulmonary edema due to left ventricular failure. The development of pulmonary edema may be associated with symptoms and signs of "fluid overload"; this is a non-specific term to describe the manifestations of left ventricular failure on the rest of the body and includes peripheral edema (swelling of the legs, in general, of the "pitting" variety, wherein the skin is slow to return to normal when pressed upon), raised jugular venous pressure and hepatomegaly, where the liver is enlarged and may be tender or even pulsatile. Other signs include end-inspiratory crackles (sounds heard at the end of a deep breath) on auscultation and the presence of a third heart sound.
"Flash pulmonary edema" ("FPE"), is rapid onset pulmonary edema. It is most often precipitated by acute myocardial infarction or mitral regurgitation, but can be caused by aortic regurgitation, heart failure, or almost any cause of elevated left ventricular filling pressures. Treatment of FPE should be directed at the underlying cause, but the mainstays are ensuring adequate oxygenation, diuresis, and decrease of pulmonary circulation pressures.
Recurrence of FPE is thought to be associated with hypertension and may signify renal artery stenosis. Prevention of recurrence is based on managing hypertension, coronary artery disease, renovascular hypertension, and heart failure.
Eisenmenger's syndrome (or ES, Eisenmenger's reaction, Eisenmenger physiology, or tardive cyanosis) is defined as the process in which a long-standing left-to-right cardiac shunt caused by a congenital heart defect (typically by a ventricular septal defect, atrial septal defect, or less commonly, patent ductus arteriosus) causes pulmonary hypertension and eventual reversal of the shunt into a cyanotic right-to-left shunt. Because of the advent of fetal screening with echocardiography early in life, the incidence of heart defects progressing to Eisenmenger's has decreased.
Eisenmenger's syndrome in a pregnant mother can cause serious complications, though successful delivery has been reported. Maternal mortality ranges from 30% to 60%, and may be attributed to fainting spells, thromboembolism, hypovolemia, hemoptysis or preeclampsia. Most deaths occur either during or within the first weeks after delivery. Pregnant women with Eisenmenger syndrome should be hospitalized after the 20th week of pregnancy - or earlier if clinical deterioration occurs.
The symptoms for pulmonary veno-occlusive disease are the following:
Passage of a clot (thrombus) from a systemic vein to a systemic artery. When clots in systemic veins break off (embolize), they travel first to the right side of the heart and, normally, then to the lungs where they lodge, causing pulmonary embolism. On the other hand, when there is a hole at the septum, either upper chambers of the heart (an atrial septal defect) or lower chambers of the heart (ventricular septal defects), a clot can cross from the right to the left side of the heart, then pass into the systemic arteries as a paradoxical embolism. Once in the arterial circulation, a clot can travel to the brain, block a vessel there, and cause a stroke (cerebrovascular accident).
Because pulmonic regurgitation is the result of other factors in the body, any noticeable symptoms are ultimately caused by an underlying medical condition rather than the regurgitation itself. However, more severe regurgitation may contribute to right ventricular enlargement by dilation, and in later stages, right heart failure. A diastolic decrescendo murmur can sometimes be identified,( heard best) over the left lower sternal border.
In medicine, hepatopulmonary syndrome is a syndrome of shortness of breath and hypoxemia (low oxygen levels in the blood of the arteries) caused by vasodilation (broadening of the blood vessels) in the lungs of patients with liver disease. Dyspnea and hypoxemia are worse in the upright position (which is called platypnea and orthodeoxia, respectively).
Signs and symptoms of Eisenmenger syndrome include the following:
- Cyanosis (a blue tinge to the skin resulting from lack of oxygen)
- High red blood cell count
- Swollen or clubbed finger tips (clubbing)
- Fainting (also known as syncope)
- Heart failure
- Abnormal heart rhythms
- Bleeding disorders
- Coughing up blood
- Iron deficiency
- Infections (endocarditis and pneumonia)
- Kidney problems
- Stroke
- Gout (rarely) due to increased uric acid resorption and production with impaired excretion
- Gallstones
Pulmonary veno-occlusive disease (PVOD) is a rare form of pulmonary hypertension caused by progressive blockage of the small veins in the lungs. The blockage leads to high blood pressures in the arteries of the lungs, which, in turn, leads to heart failure. The disease is progressive and fatal, with median survival of about 2 years from the time of diagnosis to death. The definitive therapy is lung transplantation.
Symptoms of arterial gas embolism include:
- Loss of consciousness
- Cessation of breathing
- Vertigo
- Convulsions
- Tremors
- Loss of coordination
- Loss of control of bodily functions
- Numbness
- Paralysis
- Extreme fatigue
- Weakness in the extremities
- Areas of abnormal sensation
- Visual abnormalities
- Hearing abnormalities
- Personality changes
- Cognitive impairment
- Nausea or vomiting
- Bloody sputum
- Symptoms of other consequences of lung overexpansion such as pneumothorax, subcutaneous or mediastinal emphysema may also be present.
Arterial embolism can cause occlusion in any part of the body. It is a major cause of infarction, tissue death due to the blockage of blood supply.
An embolus lodging in the brain from either the heart or a carotid artery will most likely be the cause of a stroke due to ischemia.
An arterial embolus might originate in the heart (from a thrombus in the left atrium, following atrial fibrillation or be a septic embolus resulting from endocarditis). Emboli of cardiac origin are frequently encountered in clinical practice. Thrombus formation within the atrium occurs mainly in patients with mitral valve disease, and especially in those with mitral valve stenosis (narrowing), with atrial fibrillation (AF). In the absence of AF, pure mitral regurgitation has a low incidence of thromboembolism.
The risk of emboli forming in AF depends on other risk factors such as age, hypertension, diabetes, recent heart failure, or previous stroke.
Thrombus formation can also take place within the ventricles, and it occurs in approximately 30% of anterior-wall myocardial infarctions, compared with only 5% of inferior ones. Some other risk factors are poor ejection fraction (<35%), size of infarct, and the presence of AF. In the first three months after infarction, left-ventricle aneurysms have a 10% risk of emboli forming.
Patients with prosthetic valves also carry a significant increase in risk of thromboembolism. Risk varies, based on the valve type (bioprosthetic or mechanical); the position (mitral or aortic); and the presence of other factors such as AF, left-ventricular dysfunction, and previous emboli.
Emboli often have more serious consequences when they occur in the so-called "end circulation": areas of the body that have no redundant blood supply, such as the brain and heart.
Pulmonary insufficiency (or incompetence, or regurgitation) is a condition in which the pulmonary valve is incompetent and allows backflow from the pulmonary artery to the right ventricle of the heart during diastole. While a small amount of backflow may occur ordinarily, it is usually only shown on an echocardiogram and is harmless. More pronounced regurgitation that is noticed through a routine physical examination is a medical sign of disease and warrants further investigation. If it is secondary to pulmonary hypertension it is referred to as a Graham Steell murmur.