Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Up to 80% of individuals with ARVD present have symptoms like syncope and dyspnea.The remainder frequently present with palpitations or other symptoms due to right ventricular outflow tract (RVOT) tachycardia (a type of monomorphic ventricular tachycardia).
Symptoms are usually exercise-related. In populations where hypertrophic cardiomyopathy is screened out prior to involvement in competitive athletics, it is a common cause of sudden cardiac death.
The first clinical signs of ARVD are usually during adolescence. However, signs of ARVD have been demonstrated in infants.
Arrhythmogenic right ventricular dysplasia (ARVD) is an inherited heart disease.
ARVD is caused by genetic defects of the parts of heart muscle (also called "myocardium" or "cardiac muscle") known as desmosomes, areas on the surface of heart muscle cells which link the cells together. The desmosomes are composed of several proteins, and many of those proteins can have harmful mutations.
The disease is a type of nonischemic cardiomyopathy that involves primarily the right ventricle. It is characterized by hypokinetic areas involving the free wall of the right ventricle, with fibrofatty replacement of the right ventricular myocardium, with associated arrhythmias originating in the right ventricle.
ARVD can be found in association with diffuse palmoplantar keratoderma, and woolly hair, in an autosomal recessive condition called Naxos disease, because this genetic abnormality can also affect the integrity of the superficial layers of the skin most exposed to pressure stress.
ARVC/D is an important cause of ventricular arrhythmias in children and young adults. It is seen predominantly in males, and 30–50% of cases have a familial distribution.
Subjects' symptoms from non-compaction cardiomyopathy range widely. It is possible to be diagnosed with the condition, yet not to have any of the symptoms associated with heart disease. Likewise it possible to have severe heart failure, which even though the condition is present from birth, may only manifest itself later in life. Differences in symptoms between adults and children are also prevalent with adults more likely to have heart failure and children from depression of systolic function.
Common symptoms associated with a reduced pumping performance of the heart include:
- Breathlessness
- Fatigue
- Swelling of the ankles
- Limited physical capacity and exercise intolerance
Two conditions though that are more prevalent in noncompaction cardiomyopathy are: tachyarrhythmia which can lead to sudden cardiac death and clotting of the blood in the heart.
An enlargement of the aorta may occur; an increased risk of abnormality is seen in babies of women taking lithium during the first trimester of pregnancy (though some have questioned this) and in those with Wolff-Parkinson-White syndrome.
Non-compaction cardiomyopathy (NCC), also called spongiform cardiomyopathy, is a rare congenital cardiomyopathy that affects both children and adults. It results from the failure of myocardial development during embryogenesis.
During development, the majority of the heart muscle is a sponge-like meshwork of interwoven myocardial fibers. As normal development progresses, these trabeculated structures undergo significant compaction that transforms them from spongy to solid. This process is particularly apparent in the ventricles, and particularly so in the left ventricle. Noncompaction cardiomyopathy results when there is failure of this process of compaction. Because the consequence of non-compaction is particularly evident in the left ventricle, the condition is also called left ventricular noncompaction. Other hypotheses and models have been proposed, none of which is as widely accepted as the noncompaction model.
Symptoms range greatly in severity. Most are a result of a poor pumping performance by the heart. The disease can be associated with other problems with the heart and the body.
Boxer cardiomyopathy is an adult-onset disease with three distinct clinical presentations:
The concealed form is characterized by an asymptomatic dog with premature ventricular contractions (PVCs).
The overt form is characterized by ventricular tachyarrhythmias and syncope. Dogs with overt disease may also have episodic weakness and exercise intolerance, but syncope is the predominant manifestation.
The third form, which is recognized much less frequently, is characterized by myocardial systolic dysfunction. This may result in left-sided, right-sided, or bi-ventricular congestive heart failure. It is not known if this form represents a separate clinical entity, or whether it is part of the continuum of disease.
While Ebstein's anomaly is defined as the congenital displacement of the tricuspid valve towards the apex of the right ventricle, it is often associated with other abnormalities.
There are various symptoms that can be seen:
- Chest pains
- Shortness of breath
- Pressure on the chest
- Rapid heartbeats
- Heart palpitations
- Irregular heartbeat
- Dizziness
- Loss of appetite
- Swelling in legs, ankles, or feet
Untreated hearts with RCM often develop the following characteristics:
- M or W configuration in an invasive hemodynamic pressure tracing of the RA
- Square root sign of part of the invasive hemodynamic pressure tracing Of The LV
- Biatrial enlargement
- Thickened LV walls (with normal chamber size)
- Thickened RV free wall (with normal chamber size)
- Elevated right atrial pressure (>12mmHg),
- Moderate pulmonary hypertension,
- Normal systolic function,
- Poor diastolic function, typically Grade III - IV Diastolic heart failure.
Those afflicted with RCM will experience decreased exercise tolerance, fatigue, jugular venous distention, peripheral edema, and ascites. Arrhythmias and conduction blocks are common.
Boxer cardiomyopathy (also known as "Boxer arrhythmogenic right ventricular cardiomyopathy") is a disease of the myocardium primarily affecting Boxer dogs. It is characterized by the development of ventricular tachyarrhythmias, resulting in syncope and sudden cardiac death. Myocardial failure and congestive heart failure are uncommon manifestations of the disease.
Common symptoms include a grayish-blue (cyanosis) coloration to the skin, lips, fingernails and other parts of the body. Other pronounced symptoms can be rapid/difficulty breathing, poor feeding, cold hands or feet, or being inactive and drowsy. "In a baby with hypoplastic left heart syndrome, if the natural connections between the heart's left and right sides (foramen oval and ductus arteriosus) are allowed to close, he or she may go into shock." Signs of shock can include cool or clammy skin, a weak or rapid pulse, and dilated pupils.
The clinical course of HCM is variable. Many people with HCM are asymptomatic or mildly symptomatic, and many of those carrying disease genes for HCM do not have clinically detectable disease. The symptoms and signs of HCM include shortness of breath due to stiffening and decreased blood filling of the ventricles, exertional chest pain (sometimes known as angina) due to reduced blood flow to the coronary arteries, uncomfortable awareness of the heart beat (palpitations), as well as disruption of the electrical system running through the abnormal heart muscle, lightheadedness, weakness, fainting and sudden cardiac death.
Dyspnea is largely due to increased stiffness of the left ventricle (LV), which impairs filling of the ventricles, but also leads to elevated pressure in the left ventricle and left atrium, causing back pressure and interstitial congestion in the lungs. Symptoms are not closely related to the presence or severity of an outflow tract gradient. Often, symptoms mimic those of congestive heart failure (esp. activity intolerance and dyspnea), but treatment of each is different. Beta blockers are used in both cases, but treatment with diuretics, a mainstay of CHF treatment, will exacerbate symptoms in hypertrophic obstructive cardiomyopathy by decreasing ventricular preload volume and thereby increasing outflow resistance (less blood to push aside the thickened obstructing tissue).
Major risk factors for sudden death in individuals with HCM include prior history of cardiac arrest or ventricular fibrillation, spontaneous sustained ventricular tachycardia, family history of premature sudden death, unexplained syncope, LV thickness greater than or equal to 30 mm, abnormal exercise blood pressure and nonsustained ventricular tachycardia.
Left bundle branch block (LBBB) is a cardiac conduction abnormality seen on the electrocardiogram (ECG). In this condition, activation of the left ventricle of the heart is delayed, which causes the left ventricle to contract later than the right ventricle.
Hypoplastic right heart syndrome is a congenital heart defect in which the right atrium and right ventricle are underdeveloped. This defect causes inadequate blood flow to the lungs and thus, a blue or cyanotic infant.[3]
In individuals with eccentric hypertrophy there may be little or no indication that hypertrophy has occurred as it is generally a healthy response to increased demands on the heart. Conversely, concentric hypertrophy can make itself known in a variety of ways. Most commonly, chest pain, either with or without exertion is present, along with shortness of breath with exertion, general fatigue, syncope, and palpitations. Overt signs of heart failure, such as edema, or shortness of breath without exertion are uncommon.
Ventricular septal defect is usually symptomless at birth. It usually manifests a few weeks after birth.
VSD is an acyanotic congenital heart defect, aka a left-to-right shunt, so there are no signs of cyanosis in the early stage. However, uncorrected VSD can increase pulmonary resistance leading to the reversal of the shunt and corresponding cyanosis.
- Pansystolic (Holosystolic) murmur along lower left sternal border (depending upon the size of the defect) +/- palpable thrill (palpable turbulence of blood flow). Heart sounds are normal. Larger VSDs may cause a parasternal heave, a displaced apex beat (the palpable heartbeat moves laterally over time, as the heart enlarges). An infant with a large VSD will fail to thrive and become sweaty and tachypnoeic (breathe faster) with feeds.
The restrictive VSDs (smaller defects) are associated with a louder murmur and more palpable thrill (grade IV murmur). Larger defects may eventually be associated with pulmonary hypertension due to the increased blood flow. Over time this may lead to an Eisenmenger's syndrome the original VSD operating with a left-to-right shunt, now becomes a right-to-left shunt because of the increased pressures in the pulmonary vascular bed.
No specific set of criteria has been developed for diagnosis of pacemaker syndrome. Most of the signs and symptoms of pacemaker syndrome are nonspecific, and many are prevalent in the elderly population at baseline. In the lab, pacemaker interrogation plays a crucial role in determining if the pacemaker mode had any contribution to symptoms.
Symptoms commonly documented in patients history, classified according to cause:
- Neurological - Dizziness, near syncope, and confusion.
- Heart failure - Dyspnea, orthopnea, paroxysmal nocturnal dyspnea, and edema.
- Hypotension - Seizure, mental status change, diaphoresis, and signs of orthostatic hypotension and shock.
- Low cardiac output - Fatigue, weakness, dyspnea on exertion, lethargy, and lightheadedness.
- Hemodynamic - Pulsation in the neck and abdomen, choking sensation, jaw pain, right upper quadrant (RUQ) pain, chest colds, and headache.
- Heart rate related - Palpitations associated with arrhythmias
In particular, the examiner should look for the following in the physical examination, as these are frequent findings at the time of admission:
- Vital signs may reveal hypotension, tachycardia, tachypnea, or low oxygen saturation.
- Pulse amplitude may vary, and blood pressure may fluctuate.
- Look for neck vein distension and cannon waves in the neck veins.
- Lungs may exhibit crackles.
- Cardiac examination may reveal regurgitant murmurs and variability of heart sounds.
- Liver may be pulsatile, and the RUQ may be tender to palpation. Ascites may be present in severe cases.
- The lower extremities may be edematous.
- Neurologic examination may reveal confusion, dizziness, or altered mental status.
Among the causes of LBBB are:
- Aortic stenosis
- Dilated cardiomyopathy
- Acute myocardial infarction
- Extensive coronary artery disease
- Primary disease of the cardiac electrical conduction system
- Long standing hypertension leading to aortic root dilatation and subsequent aortic regurgitation
- Lyme disease
- Side effect of some cardiac surgeries (e.g., aortic root reconstruction)
Many people with long QT syndrome have no signs or symptoms.
Some people may experience the following symptoms:
- Fainting (or syncope). This may occur when the patient is emotionally or physically stressed. It is unusual in QT syndrome to have any signs before the person actually faints.
- Seizures
- Sudden death. If there is sudden death, and doctors suspect long QT syndrome as the cause, they may recommend that the family members of the deceased get tested for the disease.
Signs and symptoms are related to type and severity of the heart defect. Symptoms frequently present early in life, but it is possible for some CHDs to go undetected throughout life. Some children have no signs while others may exhibit shortness of breath, cyanosis, fainting, heart murmur, under-development of limbs and muscles, poor feeding or growth, or respiratory infections. Congenital heart defects cause abnormal heart structure resulting in production of certain sounds called heart murmur. These can sometimes be detected by auscultation; however, not all heart murmurs are caused by congenital heart defects.
Restrictive cardiomyopathy (RCM) is a form of cardiomyopathy in which the walls of the heart are rigid (but not thickened). Thus the heart is restricted from stretching and filling with blood properly. It is the least common of the three original subtypes of cardiomyopathy: hypertrophic, dilated, and restrictive.
It should not be confused with constrictive pericarditis, a disease which presents similarly but is very different in treatment and prognosis.
Right ventricular hypertrophy (RVH) is a form of ventricular hypertrophy affecting the right ventricle.
Blood travels through the right ventricle to the lungs via the pulmonary arteries. If conditions occur which decrease pulmonary circulation, meaning blood does not flow well from the heart to the lungs, extra stress can be placed on the right ventricle. This can lead to right ventricular hypertrophy.
It can affect electrocardiography (ECG) findings. An ECG with right ventricular hypertrophy may or may not show a right axis deviation on the graph.
Obstruction defects occur when heart valves, arteries, or veins are abnormally narrow or blocked. Common defects include pulmonic stenosis, aortic stenosis, and coarctation of the aorta, with other types such as bicuspid aortic valve stenosis and subaortic stenosis being comparatively rare. Any narrowing or blockage can cause heart enlargement or hypertension.
Upon cardiac catheterization, catheters can be placed in the left ventricle and the ascending aorta, to measure the pressure difference between these structures. In normal individuals, during ventricular systole, the pressure in the ascending aorta and the left ventricle will equalize, and the aortic valve is open. In individuals with aortic stenosis or with HCM with an outflow tract gradient, there will be a pressure gradient (difference) between the left ventricle and the aorta, with the left ventricular pressure higher than the aortic pressure. This gradient represents the degree of obstruction that has to be overcome in order to eject blood from the left ventricle.
The Brockenbrough–Braunwald–Morrow sign is observed in individuals with HCM with outflow tract gradient. This sign can be used to differentiate HCM from aortic stenosis. In individuals with aortic stenosis, after a premature ventricular contraction (PVC), the following ventricular contraction will be more forceful, and the pressure generated in the left ventricle will be higher. Because of the fixed obstruction that the stenotic aortic valve represents, the post-PVC ascending aortic pressure will increase as well. In individuals with HCM, however, the degree of obstruction will increase more than the force of contraction will increase in the post-PVC beat. The result of this is that the left ventricular pressure increases and the ascending aortic pressure "decreases", with an increase in the LVOT gradient.
While the Brockenbrough–Braunwald–Morrow sign is most dramatically demonstrated using simultaneous intra-cardiac and intra-aortic catheters, it can be seen on routine physical examination as a decrease in the pulse pressure in the post-PVC beat in individuals with HCM.
Signs/symptoms of tricuspid insufficiency are generally those of right-sided heart failure, such as ascites and peripheral edema.
Tricuspid insufficiency may lead to the presence of a pansystolic heart murmur. Such a murmur is usually of low frequency and best heard low on the lower left sternal border. As with most right-sided phenomena, it tends to increase with inspiration, and decrease with expiration. This is known as Carvallo's sign. However, the murmur may be inaudible indicating the relatively low pressures in the right side of the heart. A third heart sound may also be present, also heard with inspiration at the lower sternal border.
In addition to the possible ausculatory findings above, there are other signs indicating the presence of tricuspid regurgitation. There may be giant C-V waves in the jugular pulse and a palpably (and sometimes visibly) pulsatile liver on abdominal exam. Since the murmur of tricupsid regurgitation may be faint or inaudible, these signs can be helpful in establishing the diagnosis.