Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Many of the signs and symptoms of aqueductal stenosis are similar to those of hydrocephalus. These typical symptoms include: headache, nausea and vomiting, cognitive difficulty, sleepiness, seizures, balance and gait disturbances, visual abnormalities, and incontinence.
- Headache may be a result of the raised intracranial pressure from the disrupted flow of CSF, and sometimes this symptom may come on suddenly as a “thunderclap headache”.
- In children, cognitive difficulty and developmental delay have been seen in a range of severities. Mild developmental delay is characterized by motor and neurological development that is no greater than 2 standard deviations below average for the age of the child, and moderate delay is characterized by greater than 2 standard deviations below. A child with severe delay may be unable to use spoken language or control movement or interact with others, and can behave abusively towards themselves.
- A patient's level of consciousness may also deteriorate with time, and this can lead to coma or death.
- The visual abnormalities previously mentioned include “upward gaze palsy”, where a person has difficulty looking up.
- Tremors have also been reported as a symptom, but are not as common as these previously mentioned.
Signs of aqueductal stenosis other than those mentioned in “Causes of stenosis” include detection of an enlarged lateral and third ventricle in conjunction with a smaller fourth ventricle. This variation in ventricle size is indicative of a blockage in the aqueduct because it lies between the third and fourth ventricles. Another sign of stenosis is deformation of the midbrain, which can be severe. This is caused by the pressure gradient formed from a blockage in the aqueduct.
Aqueductal stenosis is a narrowing of the aqueduct of Sylvius which blocks the flow of cerebrospinal fluid (CSF) in the ventricular system. Blockage of the aqueduct can lead to hydrocephalus, specifically as a common cause of congenital and/or obstructive hydrocephalus.
The aqueduct of Sylvius is the channel which connects the third ventricle to the fourth ventricle and is the narrowest part of the CSF pathway with a mean cross-sectional area of 0.5 mm in children and 0.8 mm in adults. Because of its small size, the aqueduct is the most likely place for a blockage of CSF in the ventricular system. This blockage causes ventricle volume to increase because the CSF cannot flow out of the ventricles and cannot be effectively absorbed by the surrounding tissue of the ventricles. Increased volume of the ventricles will result in higher pressure within the ventricles, and cause higher pressure in the cortex from it being pushed into the skull. A person may have aqueductal stenosis for years without any symptoms, and a head trauma, hemorrhage, or infection could suddenly invoke those symptoms and worsen the blockage.
Many common effects sharing similarity with chondrodysplasia punctata stem from cartilaginous origin. Radiography reveals extensive diffuse cartilaginous calcification. Pulmonary angiography and soft tissue radiography often demonstrate significant cartilaginous ossification in the trachea and larynx, with perichondral and endochondral centers significantly ossified in transformed cartilage. Abnormal diffuse cartilaginous ossification is typically most pronounced in the auricles and cartilage of the trachea and larynx, while peripheral pulmonary stenosis is frequently common in KS. Interestingly, in consanguineous parents of children with KS, one is often phenotypically normal, while the other is positive for pulmonary stenosis. Perhaps emanating from diffuse laryngotracheal calcification, patients often present with recurrent respiratory infection, otitis media, and sinusitis.
Apart from diffuse abnormal cartilaginous calcification in pulmonary and systems, patients develop significant arterial calcification throughout the body. Such calcification is concomitant with various diseases including diabetes, atherosclerosis, and renal dysfunction, while patients with oral anticoagulant use have significant aortic valve and coronary artery calcification. Although not distinctive to KS, echocardiogram analysis has revealed right ventricular hypertrophy resulting in severe pulmonary artery hypertension in several cases.
Up to ~85% of people with NS have one of the following heart defects:
- Pulmonary valvular stenosis (50–60%)
- Septal defects: atrial (10–25%) or ventricular (5–20%)
- Hypertrophic cardiomyopathy (12–35%)
Duroziez's disease is a congenital variant of mitral stenosis. It was described in 1877 by Paul Louis Duroziez.
This condition is acquired as a consequence of CNS infections, meningitis, brain tumors, head trauma, toxoplasmosis, intracranial hemorrhage (subarachnoid or intraparenchymal) and is usually painful.
The clinical presentation is variable but includes
- developmental and growth delay
- athletic muscular built
- skeletal anomalies
- joint stiffness
- characteristic facial appearance
- deafness
- variable cognitive deficits
- tracheal stenosis
- aortic stenosis
- pyloric stenosis
The facial abnormalities include:
- blepharophimosis (an abnormally narrow gap between the upper and lower eyelids)
- maxillary hypoplasia (underdevelopment of the upper jaw)
- prognathism (prominent lower jaw)
The skeletal abnormalities include:
- short stature
- square body shape
- broad ribs
- iliac hypoplasia
- brachydactyly
- flattened vertebrae
- thickened calvaria
Congenital heart disease and undescended testes have also been reported in association with this syndrome.
Congenital hydrocephalus is present in the infant prior to birth, meaning the fetus developed hydrocephalus in utero during fetal development. The most common cause of congenital hydrocephalus is aqueductal stenosis. Aqueductal stenosis occurs when the narrow passage between the third and fourth ventricles in the brain is blocked or too narrow to allow sufficient cerebral spinal fluid to drain. Fluid accumulates in the upper ventricles, causing hydrocephalus.
Other causes of congenital hydrocephalus include neural tube defects, arachnoid cysts, Dandy-Walker syndrome, and Arnold-Chiari malformation.
The cranial bones fuse by the end of the third year of life. For head enlargement to occur, hydrocephalus must occur before then. The causes are usually genetic but can also be acquired and usually occur within the first few months of life, which include 1) intraventricular matrix hemorrhages in premature infants, 2) infections, 3) type II Arnold-Chiari malformation, 4) aqueduct atresia and stenosis, and 5) Dandy-Walker malformation.
In newborns and toddlers with hydrocephalus, the head circumference is enlarged rapidly and soon surpasses the 97th percentile. Since the skull bones have not yet firmly joined together, bulging, firm anterior and posterior fontanelles may be present even when the patient is in an upright position.
The infant exhibits fretfulness, poor feeding, and frequent vomiting. As the hydrocephalus progresses, torpor sets in, and the infant shows lack of interest in their surroundings. Later on, the upper eyelids become retracted and the eyes are turned downwards ("sunset eyes") (due to hydrocephalic pressure on the mesencephalic tegmentum and paralysis of upward gaze). Movements become weak and the arms may become tremulous. Papilledema is absent but there may be a reduction of vision. The head becomes so enlarged that the child may eventually be bedridden.
About 80-90% of fetuses or newborn infants with spina bifida—often associated with meningocele or myelomeningocele—develop hydrocephalus.
Watson syndrome is an autosomal dominant condition characterized by Lisch nodules of the ocular iris, axillary/inguinal freckling, pulmonary valvular stenosis, relative macrocephaly, short stature, and neurofibromas.
Watson syndrome is allelic to NF1, the same gene associated with neurofibromatosis type 1.
Noonan syndrome (NS) is a relatively common autosomal dominant congenital disorder and is named after Jacqueline Noonan, a pediatric cardiologist. It is referred to as the male version of Turner's syndrome; however, the genetic causes of Noonan syndrome and Turner syndrome are distinct and both males and females are affected. The principal features include congenital heart defect (typicall pulmonary valve stenosis with dysplastic pulmonary valve also atrial septal defect and hypertrophic cardiomyopathy), short stature, learning problems, pectus excavatum, impaired blood clotting, and a characteristic configuration of facial features including a webbed neck and a flat nose bridge. NS is a RASopathy, and is one of several disorders that are caused by a disruption of RAS-MAPK signaling pathway.
It is believed that between approximately 1 in 1,000 and 1 in 2,500 children worldwide are born with NS. It is one of the most common genetic syndromes associated with congenital heart disease, similar in frequency to Down syndrome. However, the range and severity of features can vary greatly in patients with NS. Therefore, the syndrome is not always identified at an early age.
Left to right shunting heart defects include:
- Ventricular septal defect (VSD) (30% of all congenital heart defects)
- Atrial septal defect (ASD)
- Atrioventricular septal defect (AVSD)
- Patent ductus arteriosus (PDA)
- Previously, Patent ductus arteriosus (PDA) was listed as acyanotic but in actuality it can be cyanotic due to pulmonary hypertension resulting from the high pressure aorta pumping blood into the pulmonary trunk, which then results in damage to the lungs which can then result in pulmonary hypertension as well as shunting of blood back to the right ventricle. This consequently results in less oxygenation of blood due to alveolar damage as well as oxygenated blood shunting back to the right side of the heart, not allowing the oxygenated blood to pass through the pulmonary vein and back to the left atrium.
- (Edit - this is called Eisenmenger's syndrome and can occur with Atrial septal defect and ventricular septal defect as well (actually more common in ASD and VSD) therefore PDA can still be listed as acyanotic as, acutely, it is)
Others:
- levo-Transposition of the great arteries (l-TGA)
Acyanotic heart defects without shunting include:
- Pulmonary stenosis (a narrowing of the pulmonary valve)
- Aortic stenosis
- Coarctation of the aorta
Supravalvular aortic stenosis is a congenital obstructive narrowing of the aorta just above the aortic valve. It is often associated with other cardiovascular anomalies and is one of the characteristic findings of Williams syndrome. The diagnosis can be made by echocardiography or MRI.
The resulting syndrome depends on the structure affected.
Examples of vascular stenotic lesions include:
- Intermittent claudication (peripheral artery stenosis)
- Angina (coronary artery stenosis)
- Carotid artery stenosis which predispose to (strokes and transient ischaemic episodes)
- Renal artery stenosis
The types of stenoses in heart valves are:
- Pulmonary valve stenosis, which is the thickening of the pulmonary valve, therefore causing narrowing
- Mitral valve stenosis, which is the thickening of the mitral valve (of the left heart), therefore causing narrowing
- Tricuspid valve stenosis, which is the thickening of the tricuspid valve (of the right heart), therefore causing narrowing
- Aortic valve stenosis, which is the thickening of the aortic valve, therefore causing narrowing
Stenoses/strictures of other bodily structures/organs include:
- Pyloric stenosis (gastric outflow obstruction)
- Lumbar, cervical or thoracic spinal stenosis
- Subglottic stenosis (SGS)
- Tracheal stenosis
- Obstructive jaundice (biliary tract stenosis)
- Bowel obstruction
- Phimosis
- Non-communicating hydrocephalus
- Stenosing tenosynovitis
- Atherosclerosis
- Esophageal stricture
- Achalasia
- Prinzmetal angina
- Vaginal stenosis
In mild cases, children may show no signs or symptoms at first and their condition may not be diagnosed until later in life. Some children born with coarctation of the aorta have other heart defects too, such as aortic stenosis, ventricular septal defect, patent ductus arteriosus or mitral valve abnormalities.
Coarctation is about twice as common in boys as it is in girls. It is common in girls who have Turner syndrome.
Symptoms may be absent with mild narrowings (coarctation). When present, they include: difficulty breathing, poor appetite or trouble feeding, failure to thrive. Later on, children may develop symptoms related to problems with blood flow and an enlarged heart. They may experience dizziness or shortness of breath, faint or near-fainting episodes, chest pain, abnormal tiredness or fatigue, headaches, or nosebleeds. They have cold legs and feet or have pain in their legs with exercise (intermittent claudication).
In more severe cases, where severe coarctations, babies may develop serious problems soon after birth because not enough blood can get through the aorta to the rest of their body.
Arterial hypertension in the arms with low blood pressure in the lower extremities is classic. In the lower extremities, weak pulses in the femoral arteries and arteries of the feet are found.
The coarctation typically occurs after the left subclavian artery. However, if situated before it, blood flow to the left arm is compromised and asynchronous or radial pulses of different "strength" may be detected (normal on the right arm, weak or delayed on the left), termed "radio-radial delay". In these cases, a difference between the normal radial pulse in the right arm and the delayed femoral pulse in the legs (either side) may be apparent, whilst no such delay would be appreciated with palpation of both delayed left arm and either femoral pulses. On the other hand, a coarctation occurring after the left subclavian artery will produce synchronous radial pulses, but "radio-femoral delay" will be present under palpation in either arm (both arm pulses are normal compared to the delayed leg pulses).
Stenoses of the vascular type are often associated with unusual blood sounds resulting from turbulent flow over the narrowed blood vessel. This sound can be made audible by a stethoscope, but diagnosis is generally made or confirmed with some form of medical imaging.
A left ventricular outflow tract obstruction (LVOTO) may be due to a defect in the aortic valve, or a defect located at the subvalvar or supravalvar level.
- Aortic valve stenosis
- Supravalvar aortic stenosis
- Coarctation of the aorta
- Hypoplastic left heart syndrome
Supravalvular aortic stenosis is associated with genetic damage at the Elastin gene locus on chromosome 7q11.23. Fluorescent in situ hybridisation techniques have revealed that 96% of patients with Williams syndrome, where supravalvular aortic stenosis is characteristic, have a hemizygous deletion of the Elastin gene. Further studies have shown that patients with less extensive deletions featuring the Elastin gene also tend to develop supravalvular aortic stenosis
Shone's syndrome (also called Shone's Complex, Shone's Anomaly)is a rare congenital heart disease described by Shone in 1963. In the complete form, four left-sided defects are present:
- Supravalvular mitral membrane (SVMM)
- Parachute mitral valve
- Subaortic stenosis (membranous or muscular)
- Coarctation of the aorta
Of these four defects, supravalvular mitral membrane (SVMM) is the first to occur, and triggers the development of the other three defects. Partial complexes, or form fruste, have also been described. The definition is often expanded to include lesions of the left side of the heart not originally ascribed to Shone's syndrome, including mitral and aortic valvular lesions and supravalvular aortic stenosis.
The term parachute mitral valve stems from the morphological appearance of the valve; that is to say, the mitral valve leaflets appear as the canopy of the parachute, the chordae as the strings and the papillary muscle as the harness.
Stenosis of the pulmonary artery is a condition where the pulmonary artery is subject to an abnormal constriction (or stenosis). Peripheral pulmonary artery stenosis may occur as an isolated event or in association with Alagille syndrome, Berardinelli-Seip congenital lipodystrophy type 1, Costello syndrome, Keutel syndrome, nasodigitoacoustic syndrome (Keipert syndrome), Noonan syndrome or Williams syndrome.
It should not be confused with a pulmonary valve stenosis, which is in the heart, but can have similar hemodynamic effects. Both stenosis of the pulmonary artery and pulmonary valve stenosis are causes of pulmonic stenosis.
In some cases it is treated with surgery.
An acyanotic heart defect, also known as non-cyanotic heart defect, is a class of congenital heart defects. In these, blood is shunted (flows) from the left side of the heart to the right side of the heart due to a structural defect (hole) in the interventricular septum. People often retain normal levels of oxyhemoglobin saturation in systemic circulation.
This term is outdated, because a person with an acyanotic heart defect may show cyanosis (turn blue due to insufficient oxygen in the blood).
Among some of the symptoms consistent with pulmonary valve stenosis are the following:
- Heart murmur
- Cyanosis
- Dyspnea
- Dizziness
- Upper thorax pain
- Developmental disorders
Major symptoms of Lutembacher's syndrome as a result of ASD and MS can range from heart failure to pulmonary congestion.
- Right ventricular overload and Right-sided heart failure: Both are caused by a large ASD and MS (moderate to severe).
- Palpitations: This is caused by blood flowing from left atrium to the right atrium causing a higher left atrial pressure and leading to mitral stenosis. Both atria will be dilated (stretched or open)leading to future atrial arrhythmias or atrial fibrillation (Riaz).
- Pulmonary congestion: When blood or fluid pools within the lungs; this is usually a symptom of mitral stenosis and a small ASD.
- Loud mitral S1 and wide fixed split of pulmonary S2: The loud sound of the mitral S1 and the wide fixed split of pulmonary S2 is a symptoms of mitral stenosis. The sounds often are caused by a reduced pressure gradient in the mitral area that was caused from decompression of the left atrium from the ASD and a displacement (moving from normal position) of the left ventricular lower portion of the heart to the a large right ventricle. The second heart sound (S2) split is caused by the increase right heart blood flow through the ASD causing a late closing of the pulmonary component of the S2 as well as decreased left ventricular and aortic blood flow.
- III/IV mid diastolic murmur, early systolic murmur: This heart murmur is caused by an increase blood flow through the tricuspid valve due to ASD; it is heard best in the left lower sternal area or the bottom of the heart (apex).
A right ventricular outflow tract obstruction (RVOTO) may be due to a defect in the pulmonic valve, the supravalvar region, the infundibulum, or the pulmonary artery.
- Pulmonary atresia
- Pulmonary valve stenosis
- Hypoplastic right heart syndrome
- Tetralogy of Fallot
Myhre syndrome is a rare genetic disorder inherited in an autosomal dominant fashion. It is caused by mutation in SMAD4 gene.