Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The most common malformation in patients with the syndrome is kidney hypodysplasia, which are small and underdeveloped kidneys, often leading to end-stage renal disease (ESRD). Estimates show approximately 10% of children with hypoplastic kidneys are linked to the disease. Many different histological abnormalities have been noted, including:
- decrease in nephron number associated with hypertrophy
- focal segmental glomerulosclerosis
- interstitial fibrosis and tubular atrophy
- multicystic dysplastic kidney
Up to one-third of diagnosed patients develop end stage kidney disease, which may lead to complete kidney failure.
Ocular disc dysplasia is the most notable ocular defect of the disease. An abnormal development in the optic stalk causes optic disc dysplasia, which is caused by a mutation in the "Pax2" gene. The nerve head typically resembles the morning glory disc anomaly, but has also been described as a coloboma. A coloboma is the failure to close the choroid fissure, which is the opening from the ventral side of the retina in the optic stalk. Despite the similarities with coloboma and morning glory anomaly, significant differences exist such that optic disc dysplasia cannot be classified as either one entity.
Optic disc dysplasia is noted by an ill-defined inferior excavation, convoluted origin of the superior retinal vessels, excessive number of vessels, infrapapillary pigmentary disturbance, and slight band of retinal elevation adjacent to the disk. Some patients have normal or near normal vision, but others have visual impairment associated with the disease, though it is not certain if this is due only to the dysplastic optic nerves, or a possible contribution from macular and retinal malformations. The retinal vessels are abnormal or absent, in some cases having small vessels exiting the periphery of the disc. There is a great deal of clinical variability.
The classical triad of symptoms that defines 3C syndrome includes certain heart defects, hypoplasia (underdevelopment) of the cerebellum, and cranial dysmorphisms, which can take various forms. The heart defects and cranial dysmorphisms are heterogeneous in individuals who are all classed as having Ritscher-Schinzel syndrome.
Heart defects commonly seen with Ritscher-Schinzel syndrome are associated with the endocardial cushion and are the most important factor in determining a diagnosis. The mitral valve and tricuspid valve of the heart can be malformed, the atrioventricular canal can be complete instead of developing into the interatrial septum and interventricular septum, and conotruncal heart defects, which include tetralogy of Fallot, double outlet right ventricle, transposition of the great vessels, and hypoplastic left heart syndrome. Aortic stenosis and pulmonary stenosis have also been associated with 3C syndrome.
The cranial dysmorphisms associated with 3C syndrome are heterogeneous and include a degree of macrocephaly, a large anterior fontanel, a particularly prominent occiput and forehead, ocular hypertelorism (wide-set eyes), slanted palpebral fissures, cleft palate, a depressed nasal bridge, cleft palate with associated bifid uvula, low-set ears, micrognathia (an abnormally small jaw), brachycephaly (flattened head), and ocular coloboma. Low-set ears are the most common cranial dysmorphism seen in 3C syndrome, and ocular coloboma is the least common of the non-concurrent symptoms (cleft lip co-occurring with cleft palate is the least common).
Cranial dysplasias associated with 3C syndrome are also reflected in the brain. Besides the cerebellar hypoplasia, cysts are commonly found in the posterior cranial fossa, the ventricles and the cisterna magna are dilated/enlarged, and Dandy-Walker malformation is present. These are reflected in the developmental delays typical of the disease. 75% of children with 3C syndrome have Dandy-Walker malformation and hydrocephalus.
Signs and symptoms in other body systems are also associated with 3C syndrome. In the skeletal system, ribs may be absent, and hemivertebrae, syndactyly (fusion of fingers together), and clinodactyly (curvature of the fifth finger) may be present. In the GI and genitourinary systems, anal atresia, hypospadia (misplaced urethra), and hydronephrosis may exist. Adrenal hypoplasia and growth hormone deficiency are associated endocrine consequences of Ritscher-Schinzel syndrome. Some immunodeficiency has also been reported in connection with 3C syndrome.
Many children with the disorder die as infants due to severe congenital heart disease. The proband of Ritscher and Schinzel's original study was still alive at the age of 21.
A fetus with 3C syndrome may have an umbilical cord with one umbilical artery instead of two.
People with Möbius syndrome are born with facial paralysis and the inability to move their eyes laterally. Often, the upper lip is retracted due to muscle shrinkage. Occasionally, the cranial nerves V and VIII are affected. If cranial nerve VIII is affected, the person experiences hearing loss.
Other symptoms that sometimes occur with Möbius syndrome are:
- Limb abnormalities—clubbed feet, missing fingers or toes
- Chest-wall abnormalities (Poland Syndrome)
- Crossed eyes (strabismus)
- Difficulty in breathing and/or in swallowing
- Corneal erosion resulting from difficulty in blinking
Children with Möbius syndrome may have delayed speech because of paralysis of muscles that move the lips, soft palate, and tongue root. However, with speech therapy, most people with Möbius syndrome can develop understandable speech. Möbius syndrome has been associated with increased occurrence of the symptoms of autism. However, some children with Möbius syndrome are mistakenly labeled as intellectually disabled or autistic because of their expressionless faces, strabismus, and frequent drooling.
As a result of the changes to the developing embryo, the symptoms are very pronounced features, especially in the face. Low-set ears are a typical characteristic, as in all of the disorders which are called branchial arch syndromes. The reason for this abnormality is that ears on a foetus are much lower than those on an adult. During normal development, the ears "travel" upward on the head; however, in Crouzon patients, this pattern of development is disrupted. Ear canal malformations are extremely common, generally resulting in some hearing loss. In particularly severe cases, Ménière's disease may occur.
The most notable characteristic of Crouzon syndrome is craniosynostosis, as described above; however it usually presents as brachycephaly resulting in the appearance of a short and broad head. Exophthalmos (bulging eyes due to shallow eye sockets after early fusion of surrounding bones), hypertelorism (greater than normal distance between the eyes), and psittichorhina (beak-like nose) are also symptoms. Additionally, external strabismus is a common occurrence, which can be thought of as opposite from the eye position found in Down syndrome. Lastly, hypoplastic maxilla (insufficient growth of the midface) results in relative mandibular prognathism (chin appears to protrude despite normal growth of mandible) and gives the effect of the patient having a concave face. Crouzon syndrome is also associated with patent ductus arteriosus (PDA) and aortic coarctation.
For reasons that are not entirely clear, most Crouzon patients also have noticeably shorter humerus and femur bones relative to the rest of their bodies than members of the general population. A small percentage of Crouzon patients also have what is called "Type II" Crouzon syndrome, distinguished by partial syndactyly.
Vision in the affected eye is impaired, the degree of which depends on the size of the defect, and typically affects the visual field more than visual acuity. Additionally, there is an increased risk of serous retinal detachment, manifesting in 1/3 of patients. If retinal detachment does occur, it is usually not correctable and all sight is lost in the affected area of the eye, which may or may not involve the macula.
The effects a coloboma has on the vision can be mild or more severe depending on the size and location of the gap. If, for example, only a small part of the iris is missing, vision may be normal, whereas if a large part of the retina or optic nerve is missing, vision may be poor and a large part of the visual field may be missing. This is more likely to cause problems with mobility if the lower visual field is absent. Other conditions can be associated with a coloboma. Sometimes, the eye may be reduced in size, a condition called microphthalmia. Glaucoma, nystagmus, scotoma, or strabismus may also occur.
Other ocular malformations that include coloboma or are related to it:
- CHARGE syndrome, a term that came into use as an acronym for the set of unusual congenital features seen in a number of newborn children. The letters stand for: coloboma of the eye, heart defects, atresia of the nasal choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness. Although these features are no longer used in making a diagnosis, the name has remained.
- Cat eye syndrome, caused by the short arm (p) and a small section of the long arm (q) of human chromosome 22 being present three (trisomic) or four times (tetrasomic) instead of the usual two times. The term "cat eye" was coined because of the particular appearance of the vertical colobomas in the eyes of some patients.
- Patau syndrome (trisomy 13), a chromosomal abnormality that can cause a number of deformities, some of which include structural eye defects, including microphthalmia, Peters anomaly, cataract, iris and/or fundus coloboma, retinal dysplasia or retinal detachment, sensory nystagmus, cortical visual loss, and optic nerve hypoplasia.
- Treacher Collins syndrome, autosomal dominant syndrome caused by mutation of "TCOF1". Coloboma is part of a set of characteristic facies that features craniofacial malformations, such as downslanting eyes, ear anomalies, or hypoplasia of zygomatic bone and jaw (micrognathia).
The first noticeable signs of the syndrome usually do not appear until after the first twelve months of the child’s life. The child usually has severe balance issues as he or she learns to sit or walk, often leaning or tilting the head toward the good eye to correct the brain’s skewed perception of the world. Often the child will fall in the same direction while walking or run into objects that are placed on his or her blind side. Additionally, family members may notice a white reflex in the pupil of an affected child instead of the normal red reflex when taking photographs. The presence of this phenomenon is dependent on the degree of the coloboma, with larger colobomas more likely to manifest this particular phenomenon.
This anomaly must be confirmed through pupillary dilation and examination of the optic disc, as the symptoms alone do not constitute a diagnosis.
People with optic nerve colobomas live relatively normal lives. Although non-prescription glasses should be worn for eye protection, this syndrome does not usually prevent the individual from living a normal life, driving cars, playing sports, reading, etc. Certain activities, however, may be more difficult for patients with optic nerve colobomas due to a compromised view of the world. Like most other eye conditions, a diagnosis of optic nerve coloboma precludes a person from certain occupations.
Möbius syndrome (also spelled Moebius) is an extremely rare congenital neurological disorder which is characterized by facial paralysis and the inability to move the eyes from side to side. Most people with Möbius syndrome are born with complete facial paralysis and cannot close their eyes or form facial expressions. Limb and chest wall abnormalities sometimes occur with the syndrome. People with Möbius syndrome have normal intelligence, although their lack of facial expression is sometimes incorrectly taken to be due to dullness or unfriendliness. It is named for Paul Julius Möbius, a neurologist who first described the syndrome in 1888.
There is an overlap in symptoms between 3C syndrome and Joubert syndrome. Joubert syndrome often manifests with similar cerebellar hypoplasia and its sequelae, including hyperpnea, ataxia, changes in eye movement, and cleft lip and palate. Occasionally, Joubert syndrome will include heart malformations. Brachmann-de Lange syndrome must also be differentiated from 3C syndrome. It presents with similar craniofacial and heart abnormalities and can include Dandy-Walker phenotype, making it difficult to distinguish. Dandy-Walker malformation is also occasionally seen in Ellis-van Creveld syndrome, which is characterized by heart defects and malformed alveolar ridge. Many disorders include the Dandy-Walker phenotype and thus it is not pathognomonic for 3C syndrome.
CHARGE syndrome can also be misdiagnosed. This is because both CHARGE syndrome and 3C syndrome share symptoms of ocular colobomas, cardiac defects, growth retardation, and minor facial abnormalities.
Coffin-Siris syndrome presents with fifth-finger deformities and congenital heart defects. It is distinguished from 3C syndrome by differences in facial dysmorphisms.
The combination of muscular hypotonia and fixed dilated pupils in infancy is suspicious of Gillespie syndrome. Early onset partial aniridia, cerebellar ataxia, and mental retardation are hallmark of syndrome. The iris abnormality is specific and seems pathognomonic of Gillespie syndrome. The aniridia consisting of a superior coloboma and inferior iris hypoplasia, foveomacular dysplasia.
Atypical Gillespie syndrome associated with bilateral ptosis, exotropia, correctopia, iris hypoplasia, anterior capsular lens opacities, foveal hypoplasia, retinal vascular tortuosity, and retinal hypopigmentation.
Neurological signs ar nystagmus, mild craniofacial asymmetry, axial hypotonia, developmental delay, and mild mental retardation. Mariën P did not support the prevailing view of a global mental retardation as a cardinal feature of Gillespie syndrome but primarily reflect cerebellar induced neurobehavioral dysfunctions following disruption of the cerebrocerebellar anatomical circuitry that closely resembles the "cerebellar cognitive and affective syndrome" (CeCAS).
Congenital pulmonary stenosis and helix dysplasia can be associated.
Crouzon syndrome is an autosomal dominant genetic disorder known as a branchial arch syndrome. Specifically, this syndrome affects the first branchial (or pharyngeal) arch, which is the precursor of the maxilla and mandible. Since the branchial arches are important developmental features in a growing embryo, disturbances in their development create lasting and widespread effects.
This syndrome is named after Octave Crouzon, a French physician who first described this disorder. He noted the affected patients were a mother and her daughter, implying a genetic basis. First called "craniofacial dysostosis", the disorder was characterized by a number of clinical features. This syndrome is caused by a mutation in the fibroblast growth factor receptor II, located on chromosome 10.
Breaking down the name, "craniofacial" refers to the skull and face, and "dysostosis" refers to malformation of bone.
Now known as Crouzon syndrome, the characteristics can be described by the rudimentary meanings of its former name. What occurs is that an infant's skull and facial bones, while in development, fuse early or are unable to expand. Thus, normal bone growth cannot occur. Fusion of different sutures leads to different patterns of growth of the skull.
Examples include: trigonocephaly (fusion of the metopic suture), brachycephaly (fusion of the coronal suture), dolichocephaly (fusion of the sagittal suture), plagiocephaly (unilateral premature closure of lambdoid and coronal sutures), oxycephaly (fusion of coronal and lambdoidal sutures), Kleeblattschaedel (premature closure of all sutures).
The most common sign of CEA is the presence of an area of undeveloped choroid (appearing as a pale spot) lateral to the optic disc. The choroid is a collection of blood vessels supplying the retina. CEA can also cause retinal or scleral coloboma, coloboma of the optic disc, retinal detachment, or intraocular hemorrhage. It can be diagnosed by fundoscopy by the age of six or seven weeks. Severe cases may be blind.
Nasal dysplasia or nasoschisis is caused by a development arrest of the lateral side of the nose, resulting in a cleft in one of the nasal halves. The nasal septum and cavity can be involved, though this is rare. Nasoschisis is also characterized by hypertelorism.
First arch syndromes are congenital defects caused by a failure of neural crest cells to migrate into the first pharyngeal arch. They can produce facial anomalies. Examples of first arch syndromes include Treacher Collins syndrome and Pierre Robin syndrome.
Usually associated with diaphragmatic hernia,
pulmonary hypoplasia,
imperforate anus,
micropenis,
bilateral cryptorchidism,
cerebral ventricular dilation,
camptodactyly,
agenesis of sacrum,
low-set ear.
- Fryns et al. (1979) reported 2 stillborn sisters with a multiple congenital anomaly syndrome characterized by coarse facies with cloudy corneae, diaphragmatic defects, absence of lung lobulation, and distal limb deformities. A sporadic case was reported by Goddeeris et al. (1980). Fitch (1988) claimed that she and her colleagues were the first to describe this disorder. In 1978 they reported a single infant, born of second-cousin parents, who had absent left hemidiaphragm, hydrocephalus, arhinencephaly, and cardiovascular anomalies.
- Lubinsky et al. (1983) reported a brother and sister with Fryns syndrome who both died in the neonatal period. Facial anomalies included broad nasal bridge, microretrognathia, abnormal helices, and cleft palate. Other features included distal digital hypoplasia, lung hypoplasia, and urogenital abnormalities, including shawl scrotum, uterus bicornis, and renal cysts. They were discordant for diaphragmatic hernia, cleft lip, and Dandy–Walker anomaly.
- Meinecke and Fryns (1985) reported an affected child; consanguinity of the parents supported recessive inheritance. They noted that a diaphragmatic defect had been described in 4 of the 5 reported cases and lung hypoplasia in all. Young et al. (1986) reported a sixth case. The male infant survived for 12 days. These authors listed corneal clouding, camptodactyly with hypoplastic nails, and abnormalities of the diaphragm as cardinal features.
- Samueloff et al. (1987) described a family in which all 4 children had Fryns syndrome and neonatal mortality. Features included hypoplastic lungs, cleft palate, retrognathia, micrognathism, small thorax, diaphragmatic hernia, distal limb hypoplasia, and early onset of polyhydramnios with premature delivery. Schwyzer et al. (1987) described an affected infant whose parents were second cousins.
- Moerman et al. (1988) described infant brother and sister with the syndrome of diaphragmatic hernia, abnormal face, and distal limb anomalies. Both died shortly after birth with severe respiratory distress. Ultrasonography demonstrated fetal hydrops, diaphragmatic hernia, and striking dilatation of the cerebral ventricles in both infants. Post-mortem examination showed Dandy–Walker malformation, ventricular septal defect, and renal cystic dysplasia.
- Cunniff et al. (1990) described affected brothers and 3 other cases, bringing the total reported cases of Fryns syndrome to 25. One of the affected brothers was still alive at the age of 24 months. Bilateral diaphragmatic hernias had been repaired on the first day of life. He required extracorporeal membrane oxygenation therapy for 5 days and oscillatory therapy for 3 months. Ventriculoperitoneal shunt was required because of slowly progressive hydrocephalus. Scoliosis was associated with extranumerary vertebral bodies and 13 ribs. Because of delayed gastric emptying, a gastrostomy tube was inserted. In addition, because of persistent chylothorax, he underwent decortication of the right lung and oversewing of the thoracic duct.
- Kershisnik et al. (1991) suggested that osteochondrodysplasia is a feature of Fryns syndrome.
- Willems et al. (1991) suggested that a diaphragmatic hernia is not a necessary feature of Fryns syndrome. They described a child with all the usual features except for diaphragmatic hernia; the diaphragm was reduced to a fibrous web with little muscular component. Bartsch et al. (1995) presented 2 unrelated cases with a typical picture of Fryns syndrome but without diaphragmatic hernia. One of these patients was alive at the age of 14 months, but was severely retarded. Bamforth et al. (1987) and Hanssen et al. (1992) also described patients with this syndrome who survived the neonatal period. In the report of Hanssen et al. (1992), 2 older sibs had died in utero. The reports suggested that survival beyond the neonatal period is possible when the diaphragmatic defect and lung hypoplasia are not present. However, mental retardation has been present in all surviving patients.
- Vargas et al. (2000) reported a pair of monozygotic twins with Fryns syndrome discordant for severity of diaphragmatic defect. Both twins had macrocephaly, coarse facial appearance, hypoplasia of distal phalanges, and an extra pair of ribs. Twin A lacked an apparent diaphragmatic defect, and at 1 year of age had mild developmental delay. Twin B had a left congenital diaphragmatic hernia and died neonatally. The authors suggested that absence of diaphragmatic defect in Fryns syndrome may represent a subpopulation of more mildly affected patients.
- Aymé, "et al." (1989) described 8 cases of Fryns syndrome in France. The most frequent anomalies were diaphragmatic defects, lung hypoplasia, cleft lip and palate, cardiac defects, including septal defects and aortic arch anomalies, renal cysts, urinary tract malformations, and distal limb hypoplasia. Most patients also had hypoplastic external genitalia and anomalies of internal genitalia, including bifid or hypoplastic uterus or immature testes. The digestive tract was also often abnormal; duodenal atresia, pyloric hyperplasia, malrotation and common mesentery were present in about half of the patients. When the brain was examined, more than half were found to have Dandy–Walker anomaly and/or agenesis of the corpus callosum. A few patients demonstrated cloudy cornea. Histologically, 2 of 3 patients showed retinal dysplasia with rosettes and gliosis of the retina, thickness of the posterior capsule of the lens, and irregularities of Bowman membrane.
- Alessandri et al. (2005) reported a newborn from the Comores Islands with clinical features of Fryns syndrome without diaphragmatic hernia. They noted that diaphragmatic hernia is found in more than 80% of cases and that at least 13 other cases had been reported with an intact diaphragm.
- In a postneonatal survivor of Fryns syndrome, Riela et al. (1995) described myoclonus appearing shortly after birth, which was well controlled on valproate. Progressive cerebral and brainstem atrophy was noted on serial MRIs made at 3 months and after 6 months of age.
- Van Hove et al. (1995) described a boy with Fryns syndrome who survived to age 3 years and reviewed the outcome of other reported survivors (approximately 14% of reported cases). Survivors tended to have less frequent diaphragmatic hernia, milder lung hypoplasia, absence of complex cardiac malformation, and severe neurologic impairment. Their patient had malformations of gyration and sulcation, particularly around the central sulcus, and hypoplastic optic tracts beyond the optic chiasm associated with profound mental retardation.
- Fryns and Moerman (1998) reported a second-trimester male fetus with Fryns syndrome and midline scalp defects. The authors stated that the finding of a scalp defect in Fryns syndrome confirms that it is a true malformation syndrome with major involvement of the midline structures.
- Ramsing et al. (2000) described 2 sibships with 4 fetuses and 1 preterm baby of 31 weeks' gestation affected by a multiple congenital disorder suggestive of Fryns syndrome. In addition to the diaphragmatic defects and distal limb anomalies, they presented with fetal hydrops, cystic hygroma, and multiple pterygias. Two affected fetuses in 1 family showed severe craniofacial abnormalities with bilateral cleft lip and palate and cardiovascular malformation.
- Arnold et al. (2003) reported a male fetus with Fryns syndrome and additional abnormalities, in particular, multiple midline developmental defects including gastroschisis, central nervous system defects with left arrhinencephaly and cerebellar hypoplasia, midline cleft of the upper lip, alveolar ridge, and maxillary bone, and cleft nose with bilateral choanal atresia.
- Pierson et al. (2004) reviewed 77 reported patients with Fryns syndrome and summarized the abnormal eye findings identified in 12 of them. They also described 3 new patients with Fryns syndrome, 1 of whom demonstrated unilateral microphthalmia and cloudy cornea.
- Slavotinek et al. (2005) noted that Fryns syndrome may be the most common autosomal recessive syndrome in which congenital diaphragmatic hernia (see DIH2, 222400) is a cardinal feature. The autosomal recessive inheritance in Fryns syndrome contrasts with the sporadic inheritance for most patients with DIH.
Internasal dysplasia is caused by a development arrest before the union of the both nasal halves. These clefts are characterized by a median cleft lip, a median notch of the cupid's bow or a duplication of the labial frenulum. Besides the median cleft lip, hypertelorism can be seen in these clefts. Also sometimes there can be an underdevelopment of the premaxilla.
Along with the four aspects of the disorder that give it its name, there are also other common symptoms:
- A downward slant of the forehead
- Delayed bone maturation
- Mental retardation
The ocular abnormalities are generally retinal coloboma and nystagmus.
Cohen syndrome (also known as Pepper syndrome or Cervenka syndrome, named after Michael Cohen, William Pepper and Jaroslav Cervenka, who researched the illness) is a genetic disorder.
Fryns syndrome is an autosomal recessive multiple congenital anomaly syndrome that is usually lethal in the neonatal period. Fryns (1987) reviewed the syndrome.
Collie eye anomaly (CEA) is a congenital, inherited, bilateral eye disease of dogs, which affects the retina, choroid, and sclera. It can be a mild disease or cause blindness. CEA is caused by a simple autosomal recessive gene defect. There is no treatment.
Cohen syndrome is diagnosed by clinical examination, but often difficult due to variation in expression.
Ocular complications, though rare, are listed as optic atrophy, microphthalmia, pigmentary chorioretinitis, hemeralopia (decreased vision in bright light), myopia, strabismus, nystagmus and iris/retinal coloboma.
General appearance is obesity with thin/elongated arms and legs. Micrognathia, short philtrum, and high vaulted palate are common. Variable mental retardation with occasional seizure and deafness also is characteristic of Cohen syndrome.
Symptoms of otodental syndrome can and usually appear in early development and progress with age. Although the specific frequency of the symptoms is not known, the duration is recognized to be for life; assuming no treatment has been undergone. The symptoms are variable to each individual, can range greatly in severity and are dependent on gene expression.
More severe symptoms include:
- Globodontia – an abnormal condition that can occur in both primary and secondary tooth development, in which the molars and canines are greatly enlarged. It refers to the enlarged bulbous fused malformed posterior teeth with almost no discernible cusps or grooves. The molars are known to have a rounded globe-like shape. Can attribute to pain.
- Sensorineural hearing loss (SNHL) – also known as nerve related hearing loss, is a form of hearing loss associated with complications within the inner ear.
- Taurodontism – known as a condition in which the body of a tooth is enlarged at the expense of the roots. This results in an enlarged pulp chamber, lack of proper bonding at the cementoenamel junction, and can cause the pulpal floor to be displaced towards the root. Discomfort and pain are usually associated with these characteristics.
- Endodontic-Periodontic lesions – oral lesions that can potentially form into abscesses. May cause further soreness and pain.
Other possible, less severe, symptoms involve:
- Absent premolars – individuals suffering from otodental syndrome will typically lack the ability to develop premolars due to its genetic related affects.
- Ocular coloboma – an existent hole within the eye of the individual. The hole can be present in either the iris, choroid, optic disc, or retina and is acquired during early/prenatal development. Individuals with these symptoms may exhibit sensitivity to light, blurred vision, and/or blind spots; depending on the size of the missing tissue and its location in the eye.
Causes of the one and a half syndrome include pontine hemorrhage, ischemia, tumors, infective mass lesions such as tuberculomas, and demyelinating conditions like multiple sclerosis.