Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Affected infants present within a few months after birth with failure to thrive and severe folate deficiency manifested as macrocytic anemia and developmental delays. There can be (i) pancytopenia, (ii) diarrhea and/or mucositis and/or (iii) immune deficiency due to T-cell dysfunction and hypoimmunoglobulinemia resulting in pneumonia usually due to Pneumocystis jirovecii. Recently, several infants with the immune deficiency syndrome were described. Untreated, or with inadequate treatment, there are progressive systemic and neurological signs with a spectrum of manifestations including seizures that are often intractable. Females with HFM are fertile and, if folate sufficient during pregnancy, have normal offspring. Subjects that carry one mutated PCFT allele are normal. The genomic and clinical features of HFM were recently reviewed.
Hartnup disease manifests during infancy with variable clinical presentation: failure to thrive, photosensitivity, intermittent ataxia, nystagmus, and tremor.
Nicotinamide is necessary for neutral amino acid transporter production in the proximal renal tubules found in the kidney, and intestinal mucosal cells found in the small intestine. Therefore, a symptom stemming from this disorder results in increased amounts of amino acids in the urine.
Pellagra, a similar condition, is also caused by low nicotinamide; this disorder results in dermatitis, diarrhea, and dementia.
Hartnup disease is a disorder of amino acid transport in the intestine and kidneys; otherwise, the intestine and kidneys function normally, and the effects of the disease occur mainly in the brain and skin. Symptoms may begin in infancy or early childhood, but sometimes they begin as late as early adulthood. Symptoms may be triggered by sunlight, fever, drugs, or emotional or physical stress. A period of poor nutrition nearly always precedes an attack. The attacks usually become progressively less frequent with age. Most symptoms occur sporadically and are caused by a deficiency of niacinamide. A rash develops on parts of the body exposed to the sun. Mental retardation, short stature, headaches, unsteady gait, and collapsing or fainting are common. Psychiatric problems (such as anxiety, rapid mood changes, delusions, and hallucinations) may also result.
Extensive clinical studies established that HFM is due to (i) impaired intestinal absorption of folates and (ii) impaired transport of folates across the blood-choroid plexus-cerebrospinal fluid (CSF) barrier. Hence, patients with HFM have very low or undetectable folate blood levels. When a modest dose of a folate is given by mouth, there is impaired intestinal folate absorption without other signs of malabsorption.
Symptoms may differ greatly, as apparently modifiers control to some degree the amount of FX that is produced. Some affected individuals have few or no symptoms while others may experience life-threatening bleeding. Typically this bleeding disorder manifests itself as a tendency to easy bruising, nose bleeding, heavy and prolonged menstruation and bleeding during pregnancy and childbirth, and excessive bleeding after dental or surgical interventions. Newborns may bleed in the head, from the umbilicus, or excessively after circumcision. Other bleeding can be encountered in muscles or joints, brain, gut, or urine
While in congenital disease symptoms may be present at birth or show up later, in patients with acquired FX deficiency symptoms typically show up in later life.
Generally, the majority of individuals with creatine transporter defect express the following symptoms with varying levels of severity: developmental delay and regression, mental retardation, and abnormalities in expressive and cognitive speech. However, several studies have shown a wider variety of symptoms including, but not limited to attention deficit and hyperactivity with impulsivity, myopathy, hypotonia, semantic-pragmatic language disorder, oral dyspraxia, extrapyramidal movement disorder, constipation, absent speech development, seizures, and epilepsy. Furthermore, symptoms can significantly vary between hemizygous males and heterozygous females, although, symptoms are generally more severe in hemizygous males. Hemizygous males more commonly express seizures, growth deficiency, severe mental retardation, and severe expressive language impairment. Heterozygous females more commonly express mild retardation, impairments to confrontational naming and verbal memory, and learning and behavior problems.
Untreated PKU can lead to intellectual disability, seizures, behavioral problems, and mental disorders. It may also result in a musty smell and lighter skin. Babies born to mothers who have poorly treated PKU may have heart problems, a small head, and low birth weight.
Because the mother's body is able to break down phenylalanine during pregnancy, infants with PKU are normal at birth. The disease is not detectable by physical examination at that time, because no damage has yet been done. However, a blood test can reveal elevated phenylalanine levels after one or two days of normal infant feeding. This is the purpose of newborn screening, to detect the disease with a blood test before any damage is done, so that treatment can prevent the damage from happening.
If a child is not diagnosed during the routine newborn screening test (typically performed 2–7 days after birth, using samples drawn by neonatal heel prick), and a phenylalanine restricted diet is not introduced, then phenylalanine levels in the blood will increase over time. Toxic levels of phenylalanine (and insufficient levels of tyrosine) can interfere with infant development in ways which have permanent effects. The disease may present clinically with seizures, hypopigmentation (excessively fair hair and skin), and a "musty odor" to the baby's sweat and urine (due to phenylacetate, a carboxylic acid produced by the oxidation of phenylketone). In most cases, a repeat test should be done at approximately two weeks of age to verify the initial test and uncover any phenylketonuria that was initially missed.
Untreated children often fail to attain early developmental milestones, develop microcephaly, and demonstrate progressive impairment of cerebral function. Hyperactivity, EEG abnormalities, and seizures, and severe learning disabilities are major clinical problems later in life. A characteristic "musty or mousy" odor on the skin, as well as a predisposition for eczema, persist throughout life in the absence of treatment.
The damage done to the brain if PKU is untreated during the first months of life is not reversible. It is critical to control the diet of infants with PKU very carefully so that the brain has an opportunity to develop normally. Affected children who are detected at birth and treated are much less likely to develop neurological problems or have seizures and intellectual disability (though such clinical disorders are still possible.)
In general, however, outcomes for people treated for PKU are good. Treated people may have no detectable physical, neurological, or developmental problems at all. Many adults with PKU who were diagnosed through newborn screening and have been treated since birth have high educational achievement, successful careers, and fulfilling family lives.
Cerebral creatine deficiencies (CCD's) are a small group of disorders mainly concerned with creatine biosynthesis and utilization in the brain at the blood-brain interface. The most common CCD is:
- creatine transporter defect (CTD), an X-linked condition caused by mutations in the "SLC6A8" gene.
The two other forms of CCD are creatine "enzymatic" defects (CED's) in creatine biosynthesis, i.e. the enzyme deficiencies:
- , and
- guanidinoacetate methyltransferase deficiency.
The specific problems produced differ according to the particular abnormal synthesis involved. Common manifestations include ataxia; seizures; retinopathy; liver fibrosis; coagulopathies; failure to thrive; dysmorphic features ("e.g.," inverted nipples and subcutaneous fat pads; and strabismus. If an MRI is obtained, cerebellar atrophy and hypoplasia is a common finding.
Ocular abnormalities of CDG-Ia include: myopia, infantile esotropia, delayed visual maturation, low vision, optic disc pallor, and reduced rod function on electroretinography.
Three subtypes of CDG I (a,b,d) can cause congenital hyperinsulinism with hyperinsulinemic hypoglycemia in infancy.
Phenylketonuria (PKU) is an inborn error of metabolism that results in decreased metabolism of the amino acid phenylalanine. Untreated PKU can lead to intellectual disability, seizures, behavioral problems, and mental disorders. It may also result in a musty smell and lighter skin. Babies born to mothers who have poorly treated PKU may have heart problems, a small head, and low birth weight.
Phenylketonuria is a genetic disorder inherited from a person's parents. It is due to mutations in the "PAH" gene which results in low levels of the enzyme phenylalanine hydroxylase. This results in the buildup of dietary phenylalanine to potentially toxic levels. It is autosomal recessive meaning that both copies of the gene must be mutated for the condition to develop. There are two main types, classic PKU and variant PKU, depending on if any enzyme function remains. Those with one copy of a mutated gene typically do not have symptoms. Many countries have newborn screening programs for the disease.
Treatment is with a diet low in foods that contain phenylalanine and special supplements. Babies should use a special formula. The diet should begin as soon as possible after birth and will be lifelong. People who are diagnosed early and maintain a strict diet can have normal health and a normal life span. Effectiveness is monitored through periodic blood tests. The medication sapropterin dihydrochloride may be useful in some.
Phenylketonuria affects about one in 12,000 babies. Males and females are affected equally. The disease was discovered in 1934 by Ivar Asbjørn Følling with the importance of diet determined in 1953. Gene therapy, while promising, requires a great deal more study as of 2014.
Factor X deficiency (X as Roman numeral ten) is a bleeding disorder characterized by a lack in the production of factor X (FX), an enzyme protein that causes blood to clot in the coagulation cascade. Produced in the liver FX when activated cleaves prothrombin to generate thrombin in the intrinsic pathway of coagulation. This process is vitamin K dependent and enhanced by activated factor V.
The condition may be inherited or, more commonly, acquired.
Congenital disorder of glycosylation type IIc or Leukocyte adhesion deficiency-2 (LAD2) is a type of leukocyte adhesion deficiency attributable to the absence of neutrophil sialyl-LewisX, a ligand of P- and E-selectin on vascular endothelium. It is associated with "SLC35C1".
This disorder was discovered in two unrelated Israeli boys 3 and 5 years of age, each the offspring of consanguineous parents. Both had severe mental retardation, short stature, a distinctive facial appearance, and the Bombay (hh) blood phenotype, and both were secretor- and Lewis-negative. They both had had recurrent severe bacterial infections similar to those seen in patients with LAD1, including pneumonia, peridontitis, otitis media, and localized cellulitis. Similar to that in patients with LAD1, their infections were accompanied by pronounced leukocytosis (30,000 to 150,000/mm) but an absence of pus formation at sites of recurrent cellulitis. In vitro studies revealed a pronounced defect in neutrophil motility. Because the genes for the red blood cell H antigen and for the secretor status encode for distinct α1,2-fucosyltransferases and the synthesis of Sialyl-LewisX requires an α1,3-fucosyltransferase, it was postulated that a general defect in fucose metabolism is the basis for this disorder. It was subsequently found that GDP-L-fucose transport into Golgi vesicles was specifically impaired, and then missense mutations in the GDP-fucose transporter cDNA of three patients with LAD2 were discovered. Thus, GDP-fucose transporter deficiency is a cause of LAD2.
The presentation of patient with SPCD can be incredibly varied, from asymptomatic to lethal cardiac manifestations. Early cases were reported with liver dysfunction, muscular findings (weakness and underdevelopment), hypoketotic hypoglycemia, cardiomegaly, cardiomyopathy and marked carnitine deficiency in plasma and tissues, combined with increased excretion in urine. Patients who present clinically with SPCD fall into two categories, a metabolic presentation with hypoglycemia and a cardiac presentation characterized by cardiomyopathy. Muscle weakness can be found with either presentation.
In countries with expanded newborn screening, SPCD can be identified shortly after birth. Affected infants show low levels of free carnitine and all other acylcarnitine species by tandem mass spectrometry. Not all infants with low free carnitine are affected with SPCD. Some may have carnitine deficiency secondary to another metabolic condition or due to maternal carnitine deficiency. Proper follow-up of newborn screening results for low free carnitine includes studies of the mother to determine whether her carnitine deficiency is due to SPCD or secondary to a metabolic disease or diet. Maternal cases of SPCD have been identified at a higher than expected rate, often in women who are asymptomatic. Some mothers have also been identified through newborn screening with cardiomyopathy that had not been previously diagnosed. The identification and treatment of these asymptomatic individuals is still developing, as it is not clear whether they require the same levels of intervention as patients identified with SPCD early in life based on clinical presentation.
Systemic primary carnitine deficiency (SPCD), also known as carnitine uptake defect, carnitine transporter deficiency (CTD) or systemic carnitine deficiency is an inborn error of fatty acid transport caused by a defect in the transporter responsible for moving carnitine across the plasma membrane. Carnitine is an important amino acid for fatty acid metabolism. When carnitine cannot be transported into tissues, fatty acid oxidation is impaired, leading to a variety of symptoms such as chronic muscle weakness, cardiomyopathy, hypoglycemia and liver dysfunction. The specific transporter involved with SPCD is OCTN2, coded for by the "SLC22A5" gene located on chromosome 5. SPCD is inherited in an autosomal recessive manner, with mutated alleles coming from both parents.
Acute episodes due to SPCD are often preceded by metabolic stress such as extended fasting, infections or vomiting. Cardiomyopathy can develop in the absence of an acute episode, and can result in death. SPCD leads to increased carnitine excretion in the urine and low levels in plasma. In most locations with expanded newborn screening, SPCD can be identified and treated shortly after birth. Treatment with high doses of carnitine supplementation is effective, but needs to be rigorously maintained for life.
SPCD is more common in the Faroe Islands than in other countries, at least one out of every 1000 inhabitants of the Faroes has the illness, while the numbers for other countries are one in every 100,000. Around 100 persons in the islands have been diagnosed, around one third of the whole population of 48,000 people have been screened for SPCD. Several young Faroese people and children have died a sudden death with cardiac arrest because of SPCD. Scientists believe that around 10% of the Faroese population are carriers of the gene for SPCD. These people are not ill, but may have a lower amount of carnitine in their blood than non-carriers.
Creatine transporter defect (CTD) is an inborn error of creatine metabolism in which creatine is not properly transported to the brain and muscles due to defective creatine transporters. CTD is an X-linked disorder caused by mutations in the SLC6A8 gene. The SLC6A8 gene is located on the short arm of the sex chromosome, Xq28. Hemizygous males with CTD express speech and behavior abnormalities, intellectual disabilities, development delay, seizures, and autistic behavior. Heterozygous females with CTD generally express fewer, less severe symptoms. CTD is one of three different types of cerebral creatine deficiency (CCD). The other two types of CCD are guanidinoacetate methyltransferase (GAMT) deficiency and deficiency. Clinical presentation of CTD is similar to that of GAMT and AGAT deficiency. CTD was first identified in 2001 with the presence of a hemizygous nonsense mutation in the SLC6A8 gene in a male patient.
Type 1 usually begins somewhere in the first three to 18 months of age and in considered the most severe of the three types. Symptoms include:
- Coarse facial features
- Enlarged liver, spleen, and/or heart
- Intellectual disability
- Seizures
- Abnormal bone formation of many bones
- Progressive deterioration of brain and spinal cord
- Increased or decreased perspiration
Patients have no vascular lesions, but have rapid psychomotor regression, severe and rapidly progressing neurologic signs, elevated sodium and chloride excretion in the sweat, and fatal outcome before the sixth year.
A congenital disorder of glycosylation (previously called carbohydrate-deficient glycoprotein syndrome) is one of several rare inborn errors of metabolism in which glycosylation of a variety of tissue proteins and/or lipids is deficient or defective. Congenital disorders of glycosylation are sometimes known as CDG syndromes. They often cause serious, sometimes fatal, malfunction of several different organ systems (especially the nervous system, muscles, and intestines) in affected infants. The most common subtype is CDG-Ia (also referred to as PMM2-CDG) where the genetic defect leads to the loss of phosphomannomutase 2, the enzyme responsible for the conversion of mannose-6-phosphate into mannose-1-phosphate.
Hartnup disease (also known as "pellagra-like dermatosis" and "Hartnup disorder") is an autosomal recessive metabolic disorder affecting the absorption of nonpolar amino acids (particularly tryptophan that can be, in turn, converted into serotonin, melatonin, and niacin). Niacin is a precursor to nicotinamide, a necessary component of NAD+.
The causative gene, "SLC6A19", is located on chromosome 5.
Type 2 appears when a child is around 18 months of age and in considered milder than Type 1 but still severe. Symptoms include:
- Symptoms similar to Type 1 but milder and progress more slowly.
Ornithine translocase deficiency, also called hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome, is a rare autosomal recessive urea cycle disorder affecting the enzyme ornithine translocase, which causes ammonia to accumulate in the blood, a condition called hyperammonemia.
Ammonia, which is formed when proteins are broken down in the body, is toxic if the levels become too high. The nervous system is especially sensitive to the effects of excess ammonia.
The precise symptoms of a primary immunodeficiency depend on the type of defect. Generally, the symptoms and signs that lead to the diagnosis of an immunodeficiency include recurrent or persistent infections or developmental delay as a result of infection. Particular organ problems (e.g. diseases involving the skin, heart, facial development and skeletal system) may be present in certain conditions. Others predispose to autoimmune disease, where the immune system attacks the body's own tissues, or tumours (sometimes specific forms of cancer, such as lymphoma). The nature of the infections, as well as the additional features, may provide clues as to the exact nature of the immune defect.
Protein C deficiency is a rare genetic trait that predisposes to thrombotic disease. It was first described in 1981. The disease belongs to a group of genetic disorders known as thrombophilias. Protein C deficiency is associated with an increased incidence of venous thromboembolism (relative risk 8–10), whereas no association with arterial thrombotic disease has been found.
Primary immunodeficiencies are disorders in which part of the body's immune system is missing or does not function normally. To be considered a "primary" immunodeficiency, the cause of the immune deficiency must not be secondary in nature (i.e., caused by other disease, drug treatment, or environmental exposure to toxins). Most primary immunodeficiencies are genetic disorders; the majority are diagnosed in children under the age of one, although milder forms may not be recognized until adulthood. While there are over 100 recognized PIDs, most are very rare. About 1 in 500 people in the United States are born with a primary immunodeficiency. Immune deficiencies can result in persistent or recurring infections, autoinflammatory disorders, tumors, and disorders of various organs. There are currently no cures for these conditions; treatment is palliative and consists of managing infections and boosting the immune system.
Zinc deficiency can manifest as non-specific oral ulceration, stomatitis, or white tongue coating. Rarely it can cause angular cheilitis (sores at the corners of the mouth) and burning mouth syndrome.
Severe zinc deficiency may disturb the sense of smell and taste. Night blindness may be a feature of severe zinc deficiency, however most reports of night blindness and abnormal dark adaptation in humans with zinc deficiency have occurred in combination with other nutritional deficiencies (e.g. vitamin A).
Biotin deficiency is a rare nutritional disorder which can become serious, even fatal, if allowed to progress untreated. It can occur in people of any age, ancestry, or gender. Biotin is part of the B vitamin family.
Biotin deficiency rarely occurs among healthy people because the daily requirement of biotin is low, many foods provide adequate amounts of it, intestinal bacteria synthesize small amounts of it, and the body effectively scavenges and recycles it from bodily waste. However, deficiencies can be caused by consuming raw egg whites over a period of months to years. Egg whites contain high levels of avidin, a protein that binds biotin strongly. When cooked, avidin is partially denatured and binding to biotin is reduced. However one study showed that 30-40% of the avidin activity was still present in the white after frying or boiling. But cooked egg whites are safer to consume. Genetic disorders such as Biotinidase deficiency, Multiple carboxylase deficiency, and Holocarboxylase synthetase deficiency can also lead to inborn or late-onset forms of biotin deficiency. In all cases – dietary, genetic, or otherwise – supplementation with biotin is the primary method of treatment.