Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Anticonvulsant/sulfonamide hypersensitivity syndrome is a potentially serious hypersensitivity reaction that can be seen with drugs with an aromatic amine chemical structure, such as aromatic anticonvulsants (e.g. diphenylhydantoin, phenobarbital, phenytoin, carbamazepine, lamotrigine), sulfonamides, or other drugs with an aromatic amine (procainamide). Cross-reactivity should not occur between drugs with an aromatic amine and drugs without an aromatic amine (e.g., sulfonylureas, thiazide diuretics, furosemide, and acetazolamide); therefore, these drugs can be safely used in the future.
The hypersensitivity syndrome is characterized by a skin eruption that is initially morbilliform. The rash may also be a severe Stevens-Johnson syndrome or toxic epidermal necrolysis. Systemic manifestations occur at the time of skin manifestations and include eosinophilia, hepatitis, and interstitial nephritis. However, a subgroup of patients may become hypothyroid as part of an autoimmune thyroiditis up to 2 months after the initiation of symptoms.
This kind of adverse drug reaction is caused by the accumulation of toxic metabolites; it is not the result of an IgE-mediated reaction. The risk of first-degree relatives’ developing the same hypersensitivity reaction is higher than in the general population.
As this syndrome can present secondary to multiple anticonvulsants, the general term "anticonvulsant hypersensitivity syndrome" is favored over the original descriptive term "dilantin hypersensitivity syndrome."
NSAID or nonsteroidal anti-inflammatory drug hypersensitivity reactions encompasses a broad range of allergic or allergic-like symptoms that occur within minutes to hours after ingesting aspirin or other NSAID nonsteroidal anti-inflammatory drugs. Hypersensitivity drug reactions differ from drug toxicity reactions in that drug toxicity reactions result from the pharmacological action of a drug, are dose-related, and can occur in any treated individual (see nonsteroidal anti-inflammatory drugs section on adverse reactions for NSAID-induced toxic reactions); hypersensitivity reactions are idiosyncratic reactions to a drug. Although the term NSAID was introduced to signal a comparatively low risk of adverse effects, NSAIDs do evoke a broad range of hypersensitivity syndromes. These syndromes have recently been classified by the European Academy of Allergy and Clinical Immunology Task Force on NSAIDs Hypersensitivity. The classification organizes the hypersensitivity reactions to NSAIDs into the following five categories:
- 1) NSAIDs-exacerbated respiratory disease (NERD) is an acute (immediate to several hours) exacerbation of bronchoconstriction and other symptoms of asthma (see aspirin-induced asthma) in individuals with a history of asthma and/or nasal congestion, rhinorrhea or other symptoms of rhinitis and sinusitis in individuals with a history of rhinosinusitis after ingestion of various NSAIDs, particularly those that act by inhibiting the COX-1 enzyme. NERD does not appear to be due to a true allergic reaction to NSAIDs but rather at least in part to the more direct effects of these drugs to promote the production and/or release of certain mediators of allergy. That is, inhibition of cellular COX activity deprives tissues of its anti-inflammatory product(s), particularly prostaglandin E2 while concurrently shuttling its substrate, arachidonic acid, into other metabolizing enzymes, particularly 5-lipoxygenase (ALOX5) to overproduce pro-inflammatory leukotriene and 5-Hydroxyicosatetraenoic acid metabolites and 15-lipoxygenase (ALOX15) to overproduce pro-inflammatory 15-Hydroxyicosatetraenoic acid metabolites, including eoxins; the condition is also associated with a reduction in the anti-inflammatory metabolite, lipoxin A4, and increases in certain pro-allergic chemokines such as eotaxin-2 and CCL7.
- 2) NSAIDs-exacerbated cutaneous disease (NECD) is an acute exacerbation of wheals and/or angioedema in individuals with a history of chronic urticaria. NECD also appears due to the non-allergic action of NSAIDs in inhibiting the production of COX anti-inflammatory metabolites while promoting the production 5-lipoxygenase and 15-lipoxygenase pro-inflammatory metabolites and the overproduction of certain pro-allergic chemokines, e.g. eotaxin-1, eotaxin-2, RANTES, and interleukin-5.
- 3) NSAIDs-induced urticarial disease (NEUD) is the acute development of wheals and/or angioedema in individuals with no history of chronic NSAIDs-induced urticaria or related diseases. The mechanism behind NEUD is unknown but may be due to the non-allergic action of NSAIDs in promoting the production and/or release of allergy mediators.
- 4) Single NSAID-induced urticarial/angioedema or anaphylaxis (SNIUAA) is the acute development of urticarial, angioedema, or anaphylaxis in response to a single type of NSAID and/or a single group of NSAIDs with a similar structure but not to other structurally unrelated NSAIDs in individuals with no history of underlying relevant chronic diseases. SNIUAA is due to a true IgE-mediated allergy reaction.
- 5 Single NSAID-induced delayed reactions (SNIDR) are a set of delayed onset (usually more than 24 hour) reactions to NSAIDs. SNIDR are most commonly skin reactions that may be relatively mild moderately severe such as maculopapular rash, fixed drug eruptions, photosensitivity reactions, delayed urticaria, and contact dermatitis or extremely severe such as the DRESS syndrome, acute generalized exanthematous pustulosis, the Stevens–Johnson syndrome, and toxic epidermal necrolysis (also termed Lyell's syndrome). SNIDR result from the drug-specific stimulation of CD4+ T lymphocytes and CD8+ cytotoxic T cells to elicit a delayed type hypersensitivity reaction.
Identifying a drug allergy can sometimes be the hardest part. Sometimes drug allergies are confused with nonallergic drug reactions because they both cause somewhat similar reactions. Symptoms of a drug allergy can include, but are not limited to, the following list.
- Hives
- Itching
- Rash
- Fever
- Facial swelling
- Shortness of breath due to the short-term constriction of lung airways or longer-term damage to lung tissue
- Anaphylaxis, a life-threatening drug reaction (produces most of these symptoms as well as low blood pressure)
- Cardiac symptoms such as chest pain, shortness of breath, fatigue, chest palpitations, light headedness, and syncope due to a rare drug-induced reaction, eosinophilic myocarditis
This is an additional type that is sometimes (especially in the UK) used as a distinction from Type 2.
Instead of binding to cell surfaces, the antibodies recognise and bind to the cell surface receptors, which either prevents the intended ligand binding with the receptor or mimics the effects of the ligand, thus impairing cell signaling.
Some clinical examples:
- Graves' disease
- Myasthenia gravis
The use of Type 5 is rare. These conditions are more frequently classified as Type 2, though sometimes they are specifically segregated into their own subcategory of Type 2.
DRESS syndrome is one of several terms that have been used to describe a severe idiosyncratic reaction to a drug that is characterized by a long latency of onset after exposure to the offending medication, a rash, involvement of internal organs, hematologic abnormalities, and systemic illness. Other synonymous names and acronyms include hypersensitivity syndrome (DIHS), anticonvulsant hypersensitivity syndrome, drug-induced hypersensitivity syndrome, drug-induced delayed multiorgan hypersensitivity syndrome, and drug-induced pseudolymphoma.
The symptoms of DRESS syndrome usually begin several weeks after exposure to the offending drug. No gold standard exists for diagnosis, and at least two diagnostic criteria have been proposed. The RegiSCAR criteria and the Japanese consensus group criteria are detailed in the table below.
Symptoms may be severe and involve many different organs. In a retrospective Taiwanese cohort study of 60 patients, these incidences were observed.
The various non-allergic NSAID hypersensitivity syndromes affect 0.5–1.9% of the general population, with AERD affecting about 7% of all asthmatics and about 14% of patients with severe asthma. AERD, which is more prevalent in women, usually begins in young adulthood (twenties and thirties are the most common onset times although children are afflicted with it and present a diagnostic problem in pediatrics) and may not include any other allergies. Most commonly the first symptom is rhinitis (inflammation or irritation of the nasal mucosa), which can manifest as sneezing, runny nose, or congestion. The disorder typically progresses to asthma, then nasal polyposis, with aspirin sensitivity coming last. Anosmia (lack of smell) is also common, as inflammation within the nose and sinuses likely reaches the olfactory receptors.
The respiratory reactions to aspirin vary in severity, ranging from mild nasal congestion and eye watering to lower respiratory symptoms including wheezing, coughing, an asthma attack, and in rare cases, anaphylaxis. In addition to the typical respiratory reactions, about 10% of patients with AERD manifest skin symptoms like urticaria and/or gastrointestinal symptoms such as abdominal pain or vomiting during their reactions to aspirin.
In addition to aspirin, patients usually also react to other NSAIDs such as ibuprofen, and to any medication that inhibits the cyclooxygenase-1 (COX-1) enzyme, although paracetamol (acetaminophen) in low doses is generally considered safe. NSAID that are highly selective in blocking COX-2 and do not block its closely related paralog, COX-1, such as the COX-2 inhibitors celecoxib and rofecoxib, are also regarded as safe. Nonetheless, recent studies do find that these types of drugs, e.g. acetaminophen and celecoxib, may trigger adverse reactions in these patients; caution is recommended in using any COX inhibitors. In addition to aspirin and NSAIDs, consumption of even small amounts of alcohol also produces uncomfortable respiratory reactions in many patients.
Aspirin-induced asthma, also termed Samter's triad, Samter's syndrome, aspirin-exacerbated respiratory disease (AERD), and recently by an appointed task force of the European Academy of Allergy and Clinical Immunology/World Allergy Organization (EAACI/WAO) Nonsteroidal anti-inflammatory drugs-exacerbated respiratory disease (N-ERD). is a medical condition initially defined as consisting of three key features: asthma, respiratory symptoms exacerbated by aspirin, and nasal/ethmoidal polyposis; however, the syndrome's symptoms are exacerbated by a large variety of other nonsteroidal anti-inflammatory drugs (NSAIDs) besides aspirin. The symptoms of respiratory reactions in this syndrome are hypersensitivity reactions to NSAIDs rather than the typically described true allergic reactions that trigger other common allergen-induced asthma, rhinitis, or hives. The NSAID-induced reactions do not appear to involve the common mediators of true allergic reactions, immunoglobulin E or T cells. Rather, AERD is a type of NSAID-induced hypersensitivity syndrome. EAACI/WHO classifies the syndrome as one of 5 types of NSAID hypersensitivity or NSAID hypersensitivity reactions.
Hypersensitivity (also called hypersensitivity reaction or intolerance) is a set of undesirable reactions produced by the normal immune system, including allergies and autoimmunity. They are usually referred to as an over- reaction of the immune system and these reactions may be damaging, uncomfortable, or occasionally fatal. Hypersensitivity reactions require a pre-sensitized (immune) state of the host. They are classified in four groups after the proposal of P. G. H. Gell and Robin Coombs in 1963.
Sulfonamide hypersensitivity syndrome is similar to anticonvulsant hypersensitivity syndrome, but the onset is often sooner in the treatment course, generally after 7–14 days of therapy.
It is considered immune-mediated.
A drug allergy is an allergy to a drug, most commonly a medication, and is a form of adverse drug reaction. Medical attention should be sought immediately if an allergic reaction is suspected.
An allergic reaction will not occur on the first exposure to a substance. The first exposure allows the body to create antibodies and memory lymphocyte cells for the antigen. However, drugs often contain many different substances, including dyes, which could cause allergic reactions. This can cause an allergic reaction on the first administration of a drug. For example, a person who developed an allergy to a red dye will be allergic to any new drug which contains that red dye.
A drug allergy is different from an intolerance. A drug intolerance, which is often a milder, non-immune-mediated reaction, does not depend on prior exposure. Most people who believe they are allergic to aspirin are actually suffering from a drug intolerance.
The most common type of eruption is a morbilliform (resembling measles) or erythematous rash (approximately 90% of cases). Less commonly, the appearance may also be urticarial, papulosquamous, pustular, purpuric, bullous (with blisters) or lichenoid. Angioedema can also be drug-induced (most notably, by angiotensin converting enzyme inhibitors).
Some of the most severe and life-threatening examples of drug eruptions are erythema multiforme, Stevens–Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), hypersensitivity vasculitis, Drug induced hypersensitivity syndrome (DIHS), erythroderma and acute generalized exanthematous pustulosis (AGEP). These severe cutaneous drug eruptions are categorized as hypersensitivity reactions and are immune-mediated. There are four types of hypersensitivity reactions and many drugs can induce one or more hypersensitivity reactions.
Treatment usually involves adrenaline (epinephrine), antihistamines, and corticosteroids.
If the entire body is involved, then anaphylaxis can take place, which is an acute, systemic reaction that can prove fatal.
Some examples:
- Allergic asthma
- Allergic conjunctivitis
- Allergic rhinitis ("hay fever")
- Anaphylaxis
- Angioedema
- Urticaria (hives)
- Eosinophilia
- Penicillin allergy
- Cephalosporin allergy
- Food allergy
- Sweet itch
Atopy (atopic syndrome) is a syndrome characterized by a tendency to be “hyperallergic”. A person with atopy typically presents with one or more of the following: eczema (atopic dermatitis), allergic rhinitis (hay fever), or allergic asthma. Some patients with atopy display what is referred to as the “allergic triad” of symptoms, i.e. all three of the aforementioned conditions. Patients with atopy also have a tendency to have food allergies, allergic conjunctivitis, and other symptoms characterized by their hyperallergic state. For example, eosinophilic esophagitis is found to be associated with atopic allergies.
Atopic syndrome can be fatal for those who experience serious allergic reactions, such as anaphylaxis, brought on by reactions to food or environment.
The symptoms may vary depending upon the person, the severity of the allergy, and type of fruit. For example, mango allergy symptoms include hoarseness, dyspnoea and bronchitic rales (asthma) (Sareen and Shah). The duration of the symptoms tested by Saree and Shah were variable and ranged from 4 h [11] to 7 days [12]. The symptoms may appear within a few minutes.
Symptoms can take as long as 14 days after exposure to appear, and may include signs and symptoms commonly associated with hypersensitivity or infections.
- rashes
- itching
- joint pain (arthralgia), especially finger and toe joints
- fever, as high as 40 °C and usually appears before rash
- lymphadenopathy (swelling of lymph nodes), particularly near the site of injection, head and neck
- malaise
- hypotension (decreased blood pressure)
- splenomegaly (enlarged spleen)
- glomerulonephritis
- proteinuria
- hematuria
- shock
Allergic reactions to fruit and vegetables are usually mild and often just affect the mouth, causing itching, a rash, or blisters where the food touches the lips and mouth. This is called oral allergy syndrome. A number of people who react in this way to fruit or vegetables will also react to pollen from some trees and weeds. So, for example, people who are allergic to birch pollen are also likely to be allergic to apples.
Another symptom may include slight swelling in the throat, making it feel like it is closing. The ability to breathe is still present though, so it is not fatal.
When an antiserum is given, the human immune system can mistake the proteins present for harmful antigens. The body produces antibodies, which combine with these proteins to form immune complexes. These complexes precipitate, enter the walls of blood vessels, and activate the complement cascade, initiating an inflammatory response and consuming much of the available complement component 3 (C3). The result is a leukocytoclastic vasculitis. This results in hypocomplementemia, a low C3 level in serum. They can also cause more reactions resulting in typical symptoms of serum sickness.
The Arthus reaction involves the in situ formation of antigen/antibody complexes after the intradermal injection of an antigen. If the animal/patient was previously sensitized (has circulating antibody), an Arthus reaction occurs. Typical of most mechanisms of the type III hypersensitivity, Arthus manifests as local vasculitis due to deposition of IgG-based immune complexes in dermal blood vessels. Activation of complement primarily results in cleavage of soluble complement proteins forming C5a and C3a, which activate recruitment of PMNs and local mast cell degranulation (requiring the binding of the immune complex onto FcγRIII), resulting in an inflammatory response. Further aggregation of immune complex-related processes induce a local fibrinoid necrosis with ischemia-aggravating thrombosis in the tissue vessel walls. The end result is a localized area of redness and induration that typically lasts a day or so.
Arthus reactions have been infrequently reported after vaccinations containing diphtheria and tetanus toxoid. The CDC's description:
Arthus reactions (type III hypersensitivity reactions) are rarely reported after vaccination and can occur after tetanus toxoid–containing or diphtheria toxoid–containing vaccines. An Arthus reaction is a local vasculitis associated with deposition of immune complexes and activation of complement. Immune complexes form in the setting of high local concentration of vaccine antigens and high circulating antibody concentration. Arthus reactions are characterized by severe pain, swelling, induration, edema, hemorrhage, and occasionally by necrosis. These symptoms and signs usually occur 4–12 hours after vaccination. ACIP has recommended that persons who experienced an Arthus reaction after a dose of tetanus toxoid–containing vaccine should not receive Td more frequently than every 10 years, even for tetanus prophylaxis as part of wound management.
The Arthus reaction was discovered by Nicolas Maurice Arthus in 1903. Arthus repeatedly injected horse serum subcutaneously into rabbits. After four injections, he found that there was edema and that the serum was absorbed slowly. Further injections eventually led to gangrene.
The symptoms of a sympathomimetic toxidrome include anxiety, delusions, diaphoresis, hyperreflexia, mydriasis, paranoia, piloerection, and seizures. Complications include hypertension, and tachycardia. Substances that may cause this toxidrome include salbutamol, amphetamines, cocaine, ephedrine (Ma Huang), methamphetamine, phenylpropanolamine (PPA's), and pseudoephedrine. It may appear very similar to the anticholinergic toxidrome, but is distinguished by hyperactive bowel sounds and sweating.
Some clinical examples:
Other examples are:
- Subacute bacterial endocarditis
- Symptoms of malaria
Atopy is a predisposition toward developing certain allergic hypersensitivity reactions.
Atopy may have a hereditary component, although contact with the allergen or irritant must occur before the hypersensitivity reaction can develop. Maternal psychological trauma in utero may also be a strong indicator for development of atopy.
The term "atopy" was coined by Coca and Cooke in 1923. Many physicians and scientists use the term "atopy" for any IgE-mediated reaction (even those that are appropriate and proportional to the antigen), but many pediatricians reserve the word "atopy" for a genetically mediated predisposition to an excessive IgE reaction. The term is from Greek ἀτοπία meaning "placelessness".