Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
Symptoms of illness are specific to the type of viral infection and vary on severity, based on the individuals infected.
Symptoms vary on severity, from mild unnoticeable symptoms to more common symptoms like fever, rash, headache, achy muscle and joints, and conjunctivitis. Symptoms can last several days to weeks, but death resulting from this infection is rare.
Half of all children and a quarter of previously healthy adults are asymptomatic with "Babesia" infection. When people do develop symptoms, the most common are fever and hemolytic anemia, symptoms that are similar to those of malaria. People with symptoms usually become ill 1 to 4 weeks after the bite, or 1 to 9 weeks after transfusion of contaminated blood products. A person infected with babesiosis gradually develops malaise and fatigue, followed by a fever. Hemolytic anemia, in which red blood cells are destroyed and removed from the blood, also develops. Chills, sweats, and thrombocytopenia are also common symptoms. Symptoms may last from several days to several months.
Less common symptoms and physical exam findings of mild-to-moderate babesiosis:
In more severe cases, symptoms similar to malaria occur, with fevers up to 40.5 °C (105 °F), shaking chills, and severe anemia (hemolytic anemia). Organ failure may follow, including adult respiratory distress syndrome. Severe cases occur mostly in people who have had a splenectomy. Severe cases are also more likely to occur in the very young, very old, and persons with immunodeficiency, such as HIV/AIDS patients.
A reported increase in human babesiosis diagnoses in the 2000s is thought to be caused by more widespread testing and higher numbers of people with immunodeficiencies coming in contact with ticks, the disease vector. Little is known about the occurrence of "Babesia" species in malaria-endemic areas, where "Babesia" can easily be misdiagnosed as "Plasmodium". Human patients with repeat babesiosis infection may exhibit premunity.
A robovirus is a zoonotic virus that is transmitted by a rodent vector (i.e., "ro"dent "bo"rne).
Roboviruses mainly belong to the Arenaviridae and Hantaviridae family of viruses. Like arbovirus ("ar"thropod "bo"rne) and tibovirus ("ti"ck "bo"rne) the name refers to its method of transmission, known as its vector. This is distinguished from a clade, which groups around a common ancestor. Some scientists now refer to arbovirus and robovirus together with the term ArboRobo-virus.
Babesiosis is a malaria-like parasitic disease caused by infection with "Babesia", a genus of Apicomplexa. Human babesiosis is an uncommon but emerging disease in the Northeastern and Midwestern United States and parts of Europe, and sporadic throughout the rest of the world. It occurs in warm weather. Ticks transmit the human strain of babesiosis, so it often presents with other tick-borne illnesses such as Lyme disease. After trypanosomes, "Babesia" is thought to be the second-most common blood parasite of mammals, and they can have a major impact on health of domestic animals in areas without severe winters. In cattle, a major host, the disease is known as Texas cattle fever, redwater, or piroplasmosis.
A canine vector-borne disease (CVBD) is one of "a group of globally distributed and rapidly spreading illnesses that are caused by a range of pathogens transmitted by arthropods including ticks, fleas, mosquitoes and phlebotomine sandflies." CVBDs are important in the fields of veterinary medicine, animal welfare, and public health. Some CVBDs are of zoonotic concern.
Many CVBD infect humans as well as companion animals. Some CVBD are fatal; most can only be controlled, not cured. Therefore, infection should be avoided by preventing arthropod vectors from feeding on the blood of their preferred hosts. While it is well known that arthropods transmit bacteria and protozoa during blood feeds, viruses are also becoming recognized as another group of transmitted pathogens of both animals and humans.
Some "canine vector-borne pathogens of major zoonotic concern" are distributed worldwide, while others are localized by continent. Listed by vector, some such pathogens and their associated diseases are the following:
- Phlebotomine sandflies (Psychodidae): "Leishmania amazonensis", "L. colombiensis", and "L. infantum" cause visceral leishmaniasis (see also canine leishmaniasis). "L. braziliensis" causes mucocutaneous leishmaniasis. "L. tropica" causes cutaneous leishmaniasis. "L. peruviana" and "L. major" cause localized cutaneous leishmaniasis.
- Triatomine bugs (Reduviidae): "Trypanosoma cruzi" causes trypanosomiasis (Chagas disease).
- Ticks (Ixodidae): "Babesia canis" subspecies ("Babesia canis canis", "B. canis vogeli", "B. canis rossi", and "B. canis gibsoni" cause babesiosis. "Ehrlichia canis" and "E. chaffeensis" cause monocytic ehrlichiosis. "Anaplasma phagocytophilum" causes granulocytic anaplasmosis. "Borrelia burgdorferi" causes Lyme disease. "Rickettsia rickettsii" causes Rocky Mountain spotted fever. "Rickettsia conorii" causes Mediterranean spotted fever.
- Mosquitoes (Culicidae): "Dirofilaria immitis" and "D. repens" cause dirofilariasis.
In general, specific laboratory tests are not available to rapidly diagnose tick-borne diseases. Due to their seriousness, antibiotic treatment is often justified based on clinical presentation alone.
Horses are the most susceptible host with close to 90%
mortality of those affected, followed by mules (50%) and donkeys (10%). African donkeys and zebras very rarely display clinical symptoms, despite high virus titres in blood, and are thought to be the natural reservoir of the virus. AHS manifests itself in four different forms: the pulmonary form, the cardiac form, a mild (horse sickness fever) form, and a mixed form.
Pulmonary form
The peracute form of the disease is characterized by high fever, depression, and respiratory symptoms. The clinically affected animal has trouble breathing, starts coughing frothy fluid from nostril and mouth, and shows signs of pulmonary edema within four days. Serious lung congestion causes respiratory failure and results in death in under 24 hours. This form of the disease has the highest mortality rate.
Cardiac form
This subacute form of the disease has an incubation period longer than that of the pulmonary form. Signs of disease start at day 7–12 after infection. High fever is a common symptom. The disease also manifests as conjunctivitis, with abdominal pain and progressive dyspnea. Additionally, edema is presented under the skin of the head and neck, most notably in swelling of the supra-orbital fossae, palpebral conjunctiva, and intermandibular space. Mortality rate is between 50–70% and survivors recover in 7 days.
Mild or horse sickness fever form
Mild to subclinical disease is seen in zebras and African donkeys. Infected animals may have low grade fever and congested mucous membrane. The survival rate is 100%.
Mixed form
Diagnosis is made at necropsy. Affected horses show signs of both the pulmonary and cardiac forms of AHS.
Human granulocytic anaplasmosis (HGA) is a tick-borne, infectious disease caused by "Anaplasma phagocytophilum", an obligate intracellular bacterium that is typically transmitted to humans by ticks of the "Ixodes ricinus" species complex, including "Ixodes scapularis" and "Ixodes pacificus" in North America. These ticks also transmit Lyme disease and other tick borne diseases.
The bacteria infect white blood cells called neutrophils, causing changes in gene expression that prolong the life of these otherwise short-lived cells.
Tick-borne diseases, which afflict humans and other animals, are caused by infectious agents transmitted by tick bites. Tick-borne illnesses are caused by infection with a variety of pathogens, including rickettsia and other types of bacteria, viruses, and protozoa. Because individual ticks can harbor more than one disease-causing agent, patients can be infected with more than one pathogen at the same time, compounding the difficulty in diagnosis and treatment. As of 2016, 16 tick-borne diseases of humans are known (four discovered since 2013).
As the incidence of tick-borne illnesses increases and the geographic areas in which they are found expand, health workers increasingly must be able to distinguish the diverse, and often overlapping, clinical presentations of these diseases.
Presumptive diagnosis is made by characteristic clinical signs, post mortem lesions, and presence of competent vectors. Laboratory confirmation is by viral isolation, with such techniques as quantitative PCR for detecting viral RNA, antigen capture (ELISA), and immunofluorescence of infected tissues. Serological tests are only useful for detecting recovered animals, as sick animals die before they are able to mount effective immune responses.
Pappataci fever (also known as Phlebotomus fever and, somewhat confusingly, sandfly fever and three-day fever) is a vector-borne febrile arboviral infection caused by three serotypes of Phlebovirus. It occurs in subtropical regions of the Eastern Hemisphere. The name, pappataci fever, comes from the Italian word for sandfly, it is the union of the word "pappa" (food) and taci (silent) which distinguishes these insects from blood-feeding mosquitoes, which produce a typical noise while flying.
Signs and symptoms may include:
- fever
- severe headache
- muscle aches (myalgia)
- chills and shaking, similar to the symptoms of influenza
- nausea
- vomiting
- loss of appetite
- unintentional weight loss
- abdominal pain
- cough
- diarrhea,
- aching joints
- sensitivity to light
- weakness
- fatigue
- change in mental status (extreme confusion, memory loss, inability to comprehend environment- interaction, reading, etc.)
- temporary loss of basic motor skills
Symptoms may be minor, as evidenced by surveillance studies in high-risk areas. Gastrointestinal tract symptoms occur in less than half of patients and a skin rash is seen in less than 10% of patients. It is also characterized by a low number of platelets, a low number of white blood cells, and elevated serum transaminase levels in the majority of infected patients. Even though people of any age can get HGA, it is usually more severe in the aging or immune-compromised. Some severe complications may include respiratory failure, kidney failure, and secondary infections.
Tick paralysis results from injection of a toxin from tick salivary glands during a blood meal. The toxin causes symptoms within 2–7 days, beginning with weakness in both legs that progresses to paralysis. The paralysis ascends to the trunk, arms, and head within hours and may lead to respiratory failure and death. The disease can present as acute ataxia without muscle weakness.
Patients may report minor sensory symptoms, such as local numbness, but constitutional signs are usually absent. Deep tendon reflexes are usually decreased or absent, and ophthalmoplegia and bulbar palsy can occur.
Electromyographic (EMG) studies usually show a variable reduction in the amplitude of compound muscle action potentials, but no abnormalities of repetitive nerve stimulation studies. These appear to result from a failure of acetylcholine release at the motor nerve terminal level. There may be subtle abnormalities of motor nerve conduction velocity and sensory action potentials.
Waterborne diseases are conditions caused by pathogenic micro-organisms that are transmitted in water. Disease can be spread while bathing, washing or drinking water, or by eating food exposed to infected water. Various forms of waterborne diarrheal disease are the most prominent examples, and affect children in developing countries most dramatically.
According to the World Health Organization, waterborne diseases account for an estimated 3.6% of the total DALY (disability- adjusted life year) global burden of disease, and cause about 1.5 million human deaths annually. The World Health Organization estimates that 58% of that burden, or 842,000 deaths per year, is attributable to a lack of safe drinking water supply, sanitation and hygiene (summarized as WASH).
Brugia timori is a human filarial parasitic nematode (roundworm) which causes the disease "Timor filariasis." While this disease was first described in 1965, the identity of "Brugia timori" as the causative agent was not known until 1977. In that same year, "Anopheles barbirostris" was shown to be its primary vector. There is no known animal reservoir host.
A few days after the infective bite, a feeling of lassitude, abdominal distress and chills develop followed by fever of 39 °C to 40 °C, severe frontal headaches, muscle and joint aches, flushing of the face and a fast heart rate. After two days the fever begins to subside and the temperature returns to normal. Fatigue, a slow heart rate and low blood pressure may persist from few days to several weeks but complete recovery is the rule.
The main symptoms are diarrhea and colicky abdominal pain. Because symptoms are often mild, infections can often be easily overlooked but diagnosis is important. Flukes attach to the wall of the small intestine, but are often asymptomatic unless in large numbers. Infection can occur from eating a single infected fish source. Peripheral eosinophilia is associated especially in early phase. When present in large numbers, can cause chronic intermittent diarrhea, nausea, and vague abdominal pains. Clinical complaints can also include lethargy and anorexia. In acute metagonimiasis, clinical manifestations are developed only 5–7 days after infection. Heavy infection has also been associated with epigastric distress, fatigue, and malaise.
Occasionally, flukes invade the mucosa and eggs deposited in tissue may gain access to circulation. This can then lead to eggs embolizing in the brain, spinal cord, or heart. Granulomas may form around eggs and can cause seizures, neurologic deficits, or cardiac insufficiency.
An interesting case in Japan found Diabetes Mellitus (DM) to be a sign of chronic infection with intracerebral hemorrhages as the acute sign of aggravation. Two months after administering the appropriate drug, Praziquantel, the ICHs were gone, as was the man's Diabetes Mellitus. This unique case shows the potential of additional symptoms associated with metagonimiasis that are still unknown.
Rodent borne disease can be transmitted through different forms of contact such as rodent bites, scratches, urine, saliva, etc. Potential sites of contact with rodents include habitats such as barns, outbuildings, sheds, and dense urban areas. Transmission of disease through rodents can be spread to humans through direct handling and contact, or indirectly through rodents carrying the disease spread to ticks, mites, fleas (arboborne.
Tick paralysis is the only tick-borne disease that is not caused by an infectious organism. The illness is caused by a neurotoxin produced in the tick's salivary gland. After prolonged attachment, the engorged tick transmits the toxin to its host. The incidence of tick paralysis is unknown. Patients can experience severe respiratory distress (similar to anaphylaxis).
Tropical diseases are diseases that are prevalent in or unique to tropical and subtropical regions. The diseases are less prevalent in temperate climates, due in part to the occurrence of a cold season, which controls the insect population by forcing hibernation. However, many were present in northern Europe and northern America in the 17th and 18th centuries before modern understanding of disease causation. The initial impetus for tropical medicine was to protect the health of colonialists, notably in India under the British Raj. Insects such as mosquitoes and flies are by far the most common disease carrier, or vector. These insects may carry a parasite, bacterium or virus that is infectious to humans and animals. Most often disease is transmitted by an insect "bite", which causes transmission of the infectious agent through subcutaneous blood exchange. Vaccines are not available for most of the diseases listed here, and many do not have cures.
Human exploration of tropical rainforests, deforestation, rising immigration and increased international air travel and other tourism to tropical regions has led to an increased incidence of such diseases.
A blood smear is a simple and fairly accurate diagnostic tool, provided the blood sample is taken during the period in the day when the juveniles are in the peripheral circulation. Technicians analyzing the blood smear must be able to distinguish between "W. bancrofti" and other parasites potentially present.
A polymerase chain reaction test can also be performed to detect a minute fraction, as little as 1 pg, of filarial DNA.
Some infected people do not have microfilariae in their blood. As a result, tests aimed to detect antigens from adult worms can be used.
Ultrasonography can also be used to detect the movements and noises caused by the movement of adult worms.
Dead, calcified worms can be detected by X-ray examinations.
Pediculosis is an infestation of lice (blood-feeding ectoparasitic insects of the order Phthiraptera). The condition can occur in almost any species of warm-blooded animal (i.e. mammals and birds), including humans. Although "pediculosis" in humans may properly refer to lice infestation of any part of the body, the term is sometimes used loosely to refer to "pediculosis capitis", the infestation of the human head with the specific head louse.
An emerging infectious disease (EID) is an infectious disease whose incidence has increased in the past 20 years and could increase in the near future. Emerging infections account for at least 12% of all human pathogens. EIDs are caused by newly identified species or strains (e.g. Severe acute respiratory syndrome, HIV/AIDS) that may have evolved from a known infection (e.g. influenza) or spread to a new population (e.g. West Nile fever) or to an area undergoing ecologic transformation (e.g. Lyme disease), or be "reemerging" infections, like drug resistant tuberculosis. Nosocomial (hospital-acquired) infections, such as methicillin-resistant Staphylococcus aureus are emerging in hospitals, and extremely problematic in that they are resistant to many antibiotics. Of growing concern are adverse synergistic interactions between emerging diseases and other infectious and non-infectious conditions leading to the development of novel syndemics. Many emerging diseases are zoonotic - an animal reservoir incubates the organism, with only occasional transmission into human populations.
Metagonimiasis is a disease caused by an intestinal trematode, most commonly "Metagonimus yokagawai", but sometimes by "M. takashii" or "M. miyatai". The metagonimiasis-causing flukes are one of two minute flukes called the heterophyids. Metagonimiasis was described by Katsurasa in 1911–1913 when he first observed eggs of "M. yokagawai" in feces (date is disputed in various studies). "M. takahashii" was described later first by Suzuki in 1930 and then "M. Miyatai" was described in 1984 by Saito.
Stained adult fluke causing metagonimiasis