Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There are three main types of anomia:
- Word selection anomia occurs when the patient knows how to use an object and can correctly select the target object from a group of objects, and yet cannot name the object. Some patients with word selection anomia may exhibit selective impairment in naming particular types of objects, such as animals or colors. In the subtype known as color anomia, the patient can distinguish between colors but cannot identify them by name or name the color of an object. The patients can separate colors into categories, but they cannot name them.
- Semantic anomia is a disorder in which the meaning of words becomes lost. In patients with semantic anomia, a naming deficit is accompanied by a recognition deficit. Thus, unlike patients with word selection anomia, patients with semantic anomia are unable to select the correct object from a group of objects, even when provided with the name of the target object.
- Disconnection anomia results from the severing of connections between sensory and language cortices. Patients with disconnection anomia may exhibit modality-specific anomia, where the anomia is limited to a specific sensory modality, such as hearing. For example, a patient who is perfectly capable of naming a target object when it is presented via certain sensory modalities like audition or touch, may be unable to name the same object when the object is presented visually. Thus, in such a case, the patient's anomia arises as a consequence of a disconnect between his/her visual cortex and language cortices.
The following are common symptoms seen in patients with Wernicke's aphasia:
Impaired Comprehension: deficits in understanding (receptive) written and spoken language. This is because Wernicke's area is responsible for assigning meaning to the language that is heard, so if it is damaged, the brain cannot comprehend the information that is being received.
Poor Word Retrieval: ability to retrieve target words is impaired. This is also referred to as Anomia.
Fluent Speech: individuals with Wernicke's aphasia do not have difficulty with producing connected speech that flows.. Although the connection of the words may be appropriate, the words they are using may not belong together or make sense (see Production of Jargon below).
Production of Jargon: speech that lacks content, consists of typical intonation, and is structurally intact. Jargon can consist of a string of neologisms, as well as a combination of real words that do not make sense together in context.
Awareness: Individuals with Wernicke's aphasia are often not aware of their incorrect productions, which would further explain why they do not correct themselves when they produce jargon, paraphasias, or neologisms.
Paraphasias:
- Phonemic (Literal) Paraphasias: involves the substitution, addition, or rearrangement of sounds so that an error can be defined as sounding like the target word. Often, half of the word is still intact which allows for easy comparison to the appropriate, original word.
- Ex: "bap" for "map"
- Semantic (Verbal) Paraphasias: saying a word that is related to the target word in meaning or category; frequently observed in Wernicke's aphasia.
- Ex: "jet" for "airplane" or "knife" for "fork"
Neologisms: nonwords that have no relation to the target word.
- Ex: "dorflur" for "shoe"
Circumlocution: talking around the target word.
- Ex: "uhhh it's white...it's flat...you write on it…" (when referencing paper)
Press of speech: run-on speech.
- If a clinician asks, "what do you do at a supermarket?" And the individual responds with "Well, the supermarket is a place. It is a place with a lot of food. My favorite food is italian food. At a supermarket, I buy different kinds of food. There are carts and baskets. Supermarkets have lots of customers, and workers…."
Lack of Hemiparesis: typically, no motor deficits are seen with a localized lesion in Wernicke's area.
Reduced Retention Span: reduced ability to retain information for extended periods of time.
Impairments in reading and writing: impairments can be seen in both reading and writing with differing severity levels.
How to Differentiate from Other Types of Aphasia.
- Expressive Aphasia (non-fluent Broca's Aphasia): individuals have great difficulty forming complete sentences with generally only basic content words (leaving out words like "is" and "the").
- Global Aphasia: individuals have extreme difficulties with both expressive (producing language) and receptive (understanding language).
- Anomic Aphasia: the biggest hallmark is an individuals poor word finding abilities; their speech is fluent and appropriate, but full of circumlocutions (evident in both writing and speech).
- Conduction Aphasia: individual can comprehend what is being said and is fluent in spontaneous speech, but they cannot repeat what is being said to them.
Given the previously stated signs and symptoms the following behaviors are often seen in people with aphasia as a result of attempted compensation for incurred speech and language deficits:
- Self-repairs: Further disruptions in fluent speech as a result of mis-attempts to repair erred speech production.
- Speech disfluencies: Include previously mentioned disfluencies including repetitions and prolongations at the phonemic, syllable and word level presenting in pathological/ severe levels of frequency.
- Struggle in non-fluent aphasias: A severe increase in expelled effort to speak after a life where talking and communicating was an ability that came so easily can cause visible frustration.
- Preserved and automatic language: A behavior in which some language or language sequences that were used so frequently, prior to onset, they still possess the ability to produce them with more ease than other language post onset.
People with aphasia may experience any of the following behaviors due to an acquired brain injury, although some of these symptoms may be due to related or concomitant problems such as dysarthria or apraxia and not primarily due to aphasia. Aphasia symptoms can vary based on the location of damage in the brain. Signs and symptoms may or may not be present in individuals with aphasia and may vary in severity and level of disruption to communication. Often those with aphasia will try to hide their inability to name objects by using words like "thing". So when asked to name a pencil they may say it is a thing used to write.
- Inability to comprehend language
- Inability to pronounce, not due to muscle paralysis or weakness
- Inability to speak spontaneously
- Inability to form words
- Inability to name objects (anomia)
- Poor enunciation
- Excessive creation and use of personal neologisms
- Inability to repeat a phrase
- Persistent repetition of one syllable, word, or phrase (stereotypies)
- Paraphasia (substituting letters, syllables or words)
- Agrammatism (inability to speak in a grammatically correct fashion)
- Dysprosody (alterations in inflexion, stress, and rhythm)
- Incomplete sentences
- Inability to read
- Inability to write
- Limited verbal output
- Difficulty in naming
- Speech disorder
- Speaking gibberish
- Inability to follow or understand simple requests
Anomic aphasia (anomia) is a type of aphasia characterized by problems recalling words, names, and numbers. Speech is fluent and receptive language is not impaired in someone with anomic aphasia. Subjects often use circumlocutions (speaking in a roundabout way) in order to avoid a name they cannot recall or to express a certain word they cannot remember. Sometimes the subject can recall the name when given clues. Additionally, patients are able to speak with correct grammar; the main problem is finding the appropriate word to identify an object or person.
Sometimes subjects may know what to do with an object, but still not be able to give a name to the object. For example, if a subject is shown an orange and asked what it is called, the subject may be well aware that the object can be peeled and eaten, and may even be able to demonstrate this by actions or even verbal responses – however, they cannot recall that the object is called an "orange". Sometimes, when a person with this condition is multilingual, they might confuse the language they are speaking in trying to find the right word (inadvertent code-switching).
Wernicke's aphasia, also known as receptive aphasia, sensory aphasia, or posterior aphasia, is a type of aphasia in which individuals have difficulty understanding written and spoken language. Patients with Wernicke's aphasia demonstrate fluent speech, which is characterized by typical speech rate, intact syntactic abilities, and effortless speech output. Writing often reflects speech in that it tends to lack content or meaning. In most cases, motor deficits (i.e. hemiparesis) do not occur in individuals with Wernicke's aphasia. Therefore, they may produce a large amount of speech without much meaning. Wernicke's aphasia was named after Carl Wernicke who is credited with discovering the area of the brain responsible for language comprehension. Individuals with Wernicke's aphasia are typically unaware of their errors in speech and do not realize their speech may lack meaning. They typically remain unaware of even their most profound language deficits.
Like many acquired language disorders, Wernicke's aphasia can be experienced in many different ways and to many different degrees. Patients diagnosed with Wernicke's aphasia can show severe language comprehension deficits; however, this is dependent on the severity and extent of the lesion. Severity levels may range from being unable to understand even the simplest spoken and/or written information to missing minor details of a conversation. Many diagnosed with Wernicke's aphasia have difficulty with repetition in words and sentences, and or working memory.
Agnosias are sensory modality specific, usually classified as visual, auditory, or tactile. Associative visual agnosia refers to a subtype of visual agnosia, which was labeled by Lissauer (1890), as an inability to connect the visual percept (mental representation of something being perceived through the senses) with its related semantic information stored in memory, such as, its name, use, and description. This is distinguished from the visual apperceptive form of visual agnosia, "apperceptive visual agnosia", which is an inability to produce a complete percept, and is associated with a failure in higher order perceptual processing where feature integration is impaired, though individual features can be distinguished. In reality, patients often fall between both distinctions, with some degree of perceptual disturbances exhibited in most cases, and in some cases, patients may be labeled as integrative agnostics when they fit the criteria for both forms. Associative visual agnosias are often category-specific, where recognition of particular categories of items are differentially impaired, which can affect selective classes of stimuli, larger generalized groups or multiple intersecting categories. For example, deficits in recognizing stimuli can be as specific as familiar human faces or as diffuse as living things or non-living things.
An agnosia that affects hearing, "auditory sound agnosia", is broken into subdivisions based on level of processing impaired, and a "semantic-associative" form is investigated within the auditory agnosias.
Associative visual agnosia is a form of visual agnosia. It is an impairment in recognition or assigning meaning to a stimulus that is accurately perceived and not associated with a generalized deficit in intelligence, memory, language or attention. The disorder appears to be very uncommon in a "pure" or uncomplicated form and is usually accompanied by other complex neuropsychological problems due to the nature of the etiology. Afflicted individuals can accurately distinguish the object, as demonstrated by the ability to draw a picture of it or categorize accurately, yet they are unable to identify the object, its features or its functions.
The two main categories of visual agnosia are:
- Apperceptive visual agnosia, impaired object recognition. Individuals with apperceptive visual agnosia cannot form a whole percept of visual information.
- Associative visual agnosia, impaired object identification. Individuals with associative agnosia cannot give a meaning to a formed percept. The percept is created, but it would have no meaning for individuals who have an associative agnosia.
The syndrome rarely presents itself the same way in every patient. Some symptoms that occur may be:
- Constructional apraxia: difficulty in constructing: drawing, copying, designs, copying 3D models
- Topographical disorientation: difficulty finding one's way in the environment
- Optic ataxia: deficit in visually-guided reaching
- Ocular motor apraxia: inability to direct gaze, a breakdown (failure) in starting (initiating) fast eye movements
- Dressing apraxia: difficulty in dressing usually related to inability to orient clothing spatially, and to a disrupted awareness of body parts and the position of the body and its parts in relation to themselves and objects in the environment
- Right-left confusion: difficulty in distinguishing the difference between the directions left and right
Broadly, visual agnosia is divided into apperceptive and associative visual agnosia.
Apperceptive agnosia is failure of object recognition even when the basic visual functions (acuity, color, motion) and other mental processing, such as language and intelligence, are normal. The brain must correctly integrate features such as edges, light intensity, and color from sensory information to form a complete percept of an object. If a failure occurs during this process, a percept of an object is not fully formed and thus it cannot be recognized. Tasks requiring copying, matching, or drawing simple figures can distinguish the individuals with apperceptive agnosia because they cannot perform such tasks.
Associative agnosia is an inability to identify objects even with apparent perception and knowledge of them. It involves a higher level of processing than apperceptive agnosia. Individuals with associative agnosia can copy or match simple figures, indicating that they can perceive objects correctly. They also display the knowledge of objects when tested with tactile or verbal information. However, when tested visually, they cannot name or describe common objects. This means that there is an impairment in associating the perception of objects with the stored knowledge of them.
Although visual agnosia can be general, there exist many variants that impair recognition of specific types. These variants of visual agnosia include prosopagnosia (inability to recognize faces), pure word blindness (inability to recognize words, often called "agnosic alexia" or "pure alexia"), agnosias for colors (inability to differentiate colors), agnosias for the environment (inability to recognize landmarks or difficult with spatial layout of an environment, i.e. topographagnosia) and simultanagosia (inability to sort out multiple objects in a visual scene).
The main clinical features are signature language progressive difficulties with speech production. There can be problems in different parts of the speech production system, hence patients can present with articulatory breakdown, phonemic breakdown (difficulties with sounds) and other problems. However, it is rare for patients to have just one of these problems and most people will present with more than one problem. Features include:
- Hesitant, effortful speech
- Speech 'apraxia'
- Stutter (including return of a childhood stutter)
- Anomia
- Phonemic paraphasia (sound errors in speech e.g. 'gat' for 'cat')
- Agrammatism (using the wrong tense or word order)
As the disease develops, speech quantity decreases and many patients will become mute.
Cognitive domains other than language are rarely affected early on. However, as the disease progresses other domains can be affected. Problems with writing, reading and speech comprehension can occur as can behavioural features similar to frontotemporal dementia.
Patients with autotopagnosia exhibit an inability to locate parts of their own body, the body of an examiner’s, or the parts of a representation of a human body. Deficiencies can be in localizing parts of a certain area of the body, or the entire body.
Some patients demonstrating the symptoms of autotopagnosia have a decreased ability to locate parts of other multipart object. Patients are considered to suffer from “pure” autotopagnosia, however, if their deficiency is specific to body part localization. Patients suffering from “pure” autotopagnosia often have no problems carrying out tasks involved in everyday life that require body part awareness. Patients have difficulty locating body parts when directly asked, but can carry out activities such as putting on pants without difficulty. Patients can describe the function and appearance of body parts, yet they are still unable to locate them.
Damage to the left parietal lobe can result in what is called Gerstmann syndrome. It can include right-left confusion, a difficulty with writing Agraphia and a difficulty with mathematics Acalculia. In addition, it can also produce language deficiencies Aphasia and an inability to recognize objects normally Agnosia.
Other related disorders include:
- Apraxia: an inability to perform skilled movements despite understanding of the movements and intact sensory and motor systems.
- Finger agnosia: An inability to name the fingers, move a specific finger upon being asked, and/or recognize which finger has been touched when an examiner touches one.
Visuospatial dysgnosia is a loss of the sense of "whereness" in the relation of oneself to one's environment and in the relation of objects to each other. Visuospatial dysgnosia is often linked with topographical disorientation.
The defining characteristic of SD is decreased performance on tasks that require semantic memory. This includes difficulty with naming pictures and objects, single word comprehension, categorizing, and knowing uses and features of objects. SD patients also have difficulty with spontaneous speech creation, using words such as "this" or "things" where more specific and meaningful words can be used. Syntax is spared, and SD patients have the ability to discern syntactic violations and comprehend sentences with minimal lexical demands. SD patients have selectively worse concrete word knowledge and association, but retain knowledge and understanding of abstract words. SD patients are able to retain knowledge of numbers and music, but have more difficulty with concrete concepts with visual associations. Impairments of processing of phonemic structure and prosodic predictability have also been observed.
There is some confusion in the terminology used by different neurologists. Mesulam's original description in 1982 of progressive language problems caused by neurodegenerative disease (which he called primary progressive aphasia (PPA) included patients with progressive non-fluent (PNFA), semantic dementia (SD), and logopenic progressive aphasia (LPA).
Autotopagnosia from the Greek "a" and "gnosis," meaning "without knowledge", "topos" meaning "place", and "auto" meaning "oneself", autotopagnosia virtually translates to the "lack of knowledge about one's own space," and is clinically described as such.
Autotopagnosia is a form of agnosia, characterized by an inability to localize and orient different parts of the body. The psychoneurological disorder has also been referred to as "body-image agnosia" or "somatotopagnosia." "Somatotopagnosia" has been argued to be a better suited term to describe the condition. While autotopagnosia emphasizes the deficiencies in localizing only one's own body parts and orientation, "somatotopagnosia" also considers the inability to orient and recognize the body parts of others or representations of the body (e.g., manikins, diagrams).
Typically, the cause of autotopagnosia is a lesion found in the parietal lobe of the left hemisphere of the brain. However, it as also been noted that patients with generalized brain damage present with similar symptoms of autotopagnosia.
As a concept, autotopagnosia has been criticized as nonspecific; some claim that this is a manifestation of a greater symptomatic complex of anomia, marked by an inability to name things in general—not just parts of the human body.
Semantic dementia (SD), also known as semantic variant primary progressive aphasia (svPPA), is a progressive neurodegenerative disorder characterized by loss of semantic memory in both the verbal and non-verbal domains. However, the most common presenting symptoms are in the verbal domain (with loss of word meaning). SD is one of the three canonical clinical syndromes associated with frontotemporal lobar degeneration (FTLD), with the other two being frontotemporal dementia and progressive nonfluent aphasia. SD is a clinically defined syndrome, but is associated with predominantly temporal lobe atrophy (left greater than right) and hence is sometimes called temporal variant FTLD (tvFTLD). SD is one of the three variants of Primary Progressive Aphasia (PPA), which results from neurodegenerative disorders such as FTLD or Alzheimer's disease. It is important to note the distinctions between Alzheimer’s Disease and Semantic dementia with regard to types of memory affected. In general, Alzheimer’s Disease is referred to as disorder affecting mainly episodic memory, defined as the memory related to specific, personal events distinct for each individual. Semantic dementia generally affects semantic memory, which refers to long-term memory that deals with common knowledge and facts.3
It was first described by Arnold Pick in 1904 and in modern times was characterized by Professor Elizabeth Warrington in 1975, but it was not given the name semantic dementia until 1989. The clinical and neuropsychological features, and their association with temporal lobe atrophy were described by Professor John Hodges and colleagues in 1992.
The following diagnosis criteria were defined by Mesulam:
- As opposed to having followed trauma to the brain, a patient must show an insidious onset and a gradual progression of aphasia, defined as a disorder of sentence and/or word usage, affecting the production and comprehension of speech.
- The disorder in question must be the only determinant on functional impairment in the activities of the patient’s daily living.
- On the basis of diagnostic procedures, the disorder in question must be unequivocally attributed to a neurodegenerative process.
Whether or not PPA and other aphasias are the only source of cognitive impairment in a patient is often difficult to assess because: 1) as with other neurologically degenerative diseases, such as Alzheimer's disease, there are currently no reliable non-invasive diagnostic tests for aphasias, and thus neuropsychological assessments are the only tool physicians have for diagnosing patients; and 2) aphasias often affect other, non-language portions of these neuropsychological tests, such as those specific for memory.
Disconnection syndrome is a general term for a number of neurological symptoms caused by damage to the white matter axons of communication pathways—via lesions to association fibers or commissural fibers—in the cerebrum, independent of any lesions to the cortex. The behavioral effects of such disconnections are relatively predictable in adults. Disconnection syndromes usually reflect circumstances where regions A and B still have their functional specializations except in domains that depend on the interconnections between the two regions.
Callosal syndrome, or split-brain, is an example of a disconnection syndrome from damage to the corpus callosum between the two hemispheres of the brain. Disconnection syndrome can also lead to aphasia, left-sided apraxia, and tactile aphasia, among other symptoms. Other types of disconnection syndrome include conduction aphasia (lesion of the association tract connecting Broca’s area and Wernicke’s), agnosia, apraxia, pure alexia, etc.
Three classifications of primary progressive aphasia have been described. In the classical Mesulam criteria for primary progressive aphasia, there are two variants: a non-fluent type progressive nonfluent aphasia (PNFA) and a fluent type semantic dementia (SD). A third variant of primary progressive aphasia, logopenic progressive aphasia (LPA), is an atypical form of Alzheimer's disease. Early PNFA can include such features as speech apraxia, effortful speech, and anomia, and thus can resemble Broca’s aphasia. Early LPA involves impairments in naming and sentence repetition, and thus can resemble Conduction aphasia. However, these PPA subtypes differ from these similar aphasias, as these subtypes do not occur acutely following trauma to the brain, such as following a stroke, due to differing functional and structural neuroanatomical patterns of involvement and the progressive nature of the disease.
This disorder is often associated with brain lesions in the dominant (usually left) hemisphere including the angular and supramarginal gyri (Brodmann area 39 and 40 respectively) near the temporal and parietal lobe junction. There is significant debate in the scientific literature as to whether Gerstmann Syndrome truly represents a unified, theoretically motivated syndrome. Thus its diagnostic utility has been questioned by neurologists and neuropsychologists alike. The angular gyrus is generally involved in translating visual patterns of letter and words into meaningful information, such as is done while reading.
Gerstmann syndrome is characterized by four primary symptoms:
1. Dysgraphia/agraphia: deficiency in the ability to write
2. Dyscalculia/acalculia: difficulty in learning or comprehending mathematics
3. Finger agnosia/anomia: inability to distinguish the fingers on the hand
4. Left-right disorientation
Many studies have shown that disconnection syndromes such as aphasia, agnosia, apraxia, pure alexia and many others are not caused by direct damage to functional neocortical regions. They can also be present on only one side of the body which is why these are categorized as hemispheric disconnections. The cause for hemispheric disconnection is if the interhemispheric fibers, as mentioned earlier, are cut or reduced.
An example is commissural disconnect in adults which usually results from surgical intervention, tumor, or interruption of the blood supply to the corpus callosum or the immediately adjacent structures. Callosal disconnection syndrome is characterized by left ideomotor apraxia and left-hand agraphia and/or tactile anomia, and is relatively rare.
Other examples include commissurotomy, the surgical cutting of cerebral commissures to treat epilepsy and callosal agenesis which is when individuals are born without a corpus callosum. Those with callosal agenesis can still perform interhemispheric comparisons of visual and tactile information but with deficits in processing complex information when performing the respective tasks.
The CCAS has been described in both adults and children. The precise manifestations may vary on an individual basis, likely reflecting the precise location of the injury in the cerebellum. These investigators subsequently elaborated on the affective component of the CCAS, i.e., the neuropsychiatric phenomena. They reported that patients with injury isolated to the cerebellum may demonstrate distractibility, hyperactivity, impulsiveness, disinhibition, anxiety, ritualistic and stereotypical behaviors, illogical thought and lack of empathy, aggression, irritability, ruminative and obsessive behaviors, dysphoria and depression, tactile defensiveness and sensory overload, apathy, childlike behavior, and inability to comprehend social boundaries and assign ulterior motives.
The CCAS can be recognized by the pattern of deficits involving executive function, visual-spatial cognition, linguistic performance and changes in emotion and personality. Underdiagnosis may reflect lack of familiarity of this syndrome in the scientific and medical community. The nature and variety of the symptoms may also prove challenging. Levels of depression, anxiety, lack of emotion, and affect deregulation can vary between patients. The symptoms of CCAS are often moderately severe following acute injury in adults and children, but tend to lessen with time. This supports the view that the cerebellum is involved with the regulation of cognitive processes.