Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Also known as 'effort angina', this refers to the classic type of angina related to myocardial ischemia. A typical presentation of stable angina is that of chest discomfort and associated symptoms precipitated by some activity (running, walking, etc.) with minimal or non-existent symptoms at rest or after administration of sublingual nitroglycerin. Symptoms typically abate several minutes after activity and recur when activity resumes. In this way, stable angina may be thought of as being similar to intermittent claudication symptoms. Other recognized precipitants of stable angina include cold weather, heavy meals, and emotional stress.
Unstable angina (UA) (also ""crescendo angina""; this is a form of acute coronary syndrome) is defined as angina pectoris that changes or worsens.
It has at least one of these three features:
1. it occurs at rest (or with minimal exertion), usually lasting more than 10 minutes
2. it is severe and of new onset (i.e., within the prior 4–6 weeks)
3. it occurs with a crescendo pattern (i.e., distinctly more severe, prolonged, or frequent than before).
UA may occur unpredictably at rest, which may be a serious indicator of an impending heart attack. What differentiates stable angina from unstable angina (other than symptoms) is the pathophysiology of the atherosclerosis. The pathophysiology of unstable angina is the reduction of coronary flow due to transient platelet aggregation on apparently normal endothelium, coronary artery spasms, or coronary thrombosis. The process starts with atherosclerosis, progresses through inflammation to yield an active unstable plaque, which undergoes thrombosis and results in acute myocardial ischemia, which, if not reversed, results in cell necrosis (infarction). Studies show that 64% of all unstable anginas occur between 22:00 and 08:00 when patients are at rest.
In stable angina, the developing atheroma is protected with a fibrous cap. This cap may rupture in unstable angina, allowing blood clots to precipitate and further decrease the area of the coronary vessel's lumen. This explains why, in many cases, unstable angina develops independently of activity.
In contrast to patient with unstable angina secondary to coronary atherosclerosis, patients with variant angina are generally younger and have fewer coronary risk factors (except smoking). Episode of chest pain usually does not progress from a period of chronic stable angina. Cardiac examination is usually normal in the absence of ischemia.
Symptoms typically occur at rest, rather than on exertion (thus attacks usually occur in early morning hours). Two-thirds of patients have concurrent atherosclerosis of a major coronary artery, but this is often mild or not in proportion to the degree of symptoms.
Prinzmetal's should be suspected by a cardiologist when the pain occurs at rest and/or in clusters, and in the absence of a positive treadmill stress test, as Prinzmetal's is exercise tolerant and can generally only be diagnosed after other forms of cardiac disease have been ruled out.
It is associated with specific ECG changes (elevation rather than depression of the ST segment) together with small elevation of cardiac enzymes (especially with long attacks). However, in order to be diagnosed, these ECG changes can only be tracked when the electrocardiogram occurs while the patient is experiencing an attack. Therefore, many experts recommend provocative testing during electrocardiogram testing to attempt to induce an attack when Prinzmetal's is suspected.
Prinzmetal's or Prinzmetal angina (, sounds like "prints metal") (also known as variant angina, vasospastic angina (VSA), angina inversa, or coronary vessel spasm) is a syndrome typically consisting of angina (cardiac chest pain) at rest that occurs in cycles. It is caused by vasospasm, a narrowing of the coronary arteries caused by contraction of the smooth muscle tissue in the vessel walls rather than directly by atherosclerosis (buildup of fatty plaque and hardening of the arteries).
For a portion of patients Prinzmetal's angina may be a manifestation of vasospastic disorder and is associated with migraine, Raynaud's phenomenon or aspirin-induced asthma.
Unstable angina (UA) is a type of angina pectoris that is irregular. It is also classified as a type of acute coronary syndrome (ACS).
It can be difficult to distinguish unstable angina from non-ST elevation (non-Q wave) myocardial infarction (NSTEMI). They differ primarily in whether the ischemia is severe enough to cause sufficient damage to the heart's muscular cells to release detectable quantities of a marker of injury (typically troponin T or troponin I). Unstable angina is considered to be present in patients with ischemic symptoms suggestive of an ACS and no elevation in troponin, with or without ECG changes indicative of ischemia (e.g., ST segment depression or transient elevation or new T wave inversion). Since an elevation in troponin may not be detectable for up to 12 hours after presentation, UA and NSTEMI are frequently indistinguishable at initial evaluation.
The pathophysiology of unstable angina is controversial. Until recently, unstable angina was assumed to be angina pectoris caused by disruption of an atherosclerotic plaque with partial thrombosis and possibly embolization or vasospasm leading to myocardial ischemia. However, sensitive troponin assays reveal rise of cardiac troponin in the bloodstream with episodes of even mild myocardial ischemia. Since unstable angina is assumed to occur in the setting of acute myocardial ischemia without troponin release, the concept of unstable angina is being questioned with some calling for retiring the term altogether.
Chest pain is a major indication of coronary ischemia. If chest pain occurs while exercising, or during sex, but it doesn't persist after rest, it may be coronary ischemia, or what is called, "angina". Some people characterize the pain they feel as though an elephant is sitting on their chest.
Other typical symptoms include diaphoresis which is sweaty palms, and clammy skin, nausea or vomiting, or shortness of breath. Chest pain radiating down the left arm is also a symptom of coronary ischemia and the pain can also be radiating directly to the back in some instances.
Most atypical symptoms are seen in women, diabetics, and the elderly more than anyone else.
These type of symptoms include stomach pain, and simply fatigue. It can also include heartburn and anxiety.
If no symptoms are present it is called silent ischemia.
Signs and symptoms of ischemic cardiomyopathy include sudden fatigue, shortness of breath, dizziness and palpitations.
Coronary vasospasm is a sudden, intense vasoconstriction of an epicardial coronary artery that causes occlusion (stoppage) or near-occlusion of the vessel.
It can cause Prinzmetal's angina.
It can occur in multiple vessels.
Atropine has been used to treat the condition.
Approximately 10% of all myocardial infarctions lead to PVF. The incidence peaks between 20 and 50 minutes after the start of the MI. 2/3 of events occur before medical attendance, and of these medically unattended events, 2/3 occur after more than 30 minutes of warning symptoms.
The risk of PVF during acute myocardial infarction is related to the amount of ST elevation, the presence of hypokalemia, the absence of pre-infarction angina, the size of the infarction, and the presence of a blocked left coronary artery. Other risk factors could include younger age, male gender, and history of sudden cardiac death in first degree relatives.
This condition can cause complications such as vasospasm, angina pectoris, arrhythmia, ventricular tachycardia. Additionally many patients express discomfort in specific positions, (i.e. lying on the left side for a prolonged period of time).
Ischemic cardiomyopathy is a type of cardiomyopathy caused by a narrowing of the coronary arteries which supply blood to the heart. Typically, patients with ischemic cardiomyopathy have a history of acute myocardial infarction, however, it may occur in patients with coronary artery disease, but without a past history of acute myocardial infarction. This cardiomyopathy is one of the leading causes of sudden cardiac death.
Chest pain that occurs regularly with activity, after eating, or at other predictable times is termed stable angina and is associated with narrowings of the arteries of the heart.
Angina that changes in intensity, character or frequency is termed unstable. Unstable angina may precede myocardial infarction. In adults who go to the emergency department with an unclear cause of pain, about 30% have pain due to coronary artery disease.
Coronary artery disease (CAD), also known as ischemic heart disease (IHD), refers to a group of diseases which includes stable angina, unstable angina, myocardial infarction, and sudden cardiac death. It is within the group of cardiovascular diseases of which it is the most common type. A common symptom is chest pain or discomfort which may travel into the shoulder, arm, back, neck, or jaw. Occasionally it may feel like heartburn. Usually symptoms occur with exercise or emotional stress, last less than a few minutes, and improve with rest. Shortness of breath may also occur and sometimes no symptoms are present. Occasionally, the first sign is a heart attack. Other complications include heart failure or an abnormal heartbeat.
Risk factors include high blood pressure, smoking, diabetes, lack of exercise, obesity, high blood cholesterol, poor diet, depression, and excessive alcohol. The underlying mechanism involves reduction of blood flow and oxygen to the heart muscle due to atherosclerosis of the arteries of the heart. A number of tests may help with diagnoses including: electrocardiogram, cardiac stress testing, coronary computed tomographic angiography, and coronary angiogram, among others.
Ways to reduce CAD risk include eating a healthy diet, regularly exercising, maintaining a healthy weight, and not smoking. Medications for diabetes, high cholesterol, or high blood pressure are sometimes used. There is limited evidence for screening people who are at low risk and do not have symptoms. Treatment involves the same measures as prevention. Additional medications such as antiplatelets (including aspirin), beta blockers, or nitroglycerin may be recommended. Procedures such as percutaneous coronary intervention (PCI) or coronary artery bypass surgery (CABG) may be used in severe disease. In those with stable CAD it is unclear if PCI or CABG in addition to the other treatments improves life expectancy or decreases heart attack risk.
In 2015 CAD affected 110 million people and resulted in 8.9 million deaths. It makes up 15.9% of all deaths making it the most common cause of death globally. The risk of death from CAD for a given age has decreased between 1980 and 2010, especially in developed countries. The number of cases of CAD for a given age has also decreased between 1990 and 2010. In the United States in 2010 about 20% of those over 65 had CAD, while it was present in 7% of those 45 to 64, and 1.3% of those 18 to 45. Rates are higher among men than women of a given age.
A myocardial bridge occurs when one of the coronary arteries tunnels through the myocardium rather than resting on top of it. Typically, the arteries rest on top of the heart muscle and feed blood down into smaller vessels that populate throughout the myocardium. But if the muscle grows around one of the larger arteries, then a myocardial bridge is formed. As the heart squeezes to pump blood, the muscle exerts pressure across the bridge and constricts the artery. This defect is present from birth. It can lead to uncomfortable, powerful heartbeats and angina. The incidence of the condition in the general population is estimated at 5% based on autopsy findings, but significance when found in association with other cardiac conditions is unknown.
The condition is diagnosed on a scale based on what percentage of obstruction occurs. If there is less than 50% blockage, then the condition is probably benign. Blockage over 70% usually causes some pain. Small amounts of myocardial bridging often are undetectable, as the blood usually flows through the coronary while the heart is relaxing in diastole.
Symptoms can be as follows. They are periodic, and occur only during an "episode", usually after eating.
- Sinus bradycardia
- Difficulty inhaling
- Angina pectoris
- Left ventricular discomfort
- Fatigue
- Anxiety
- Uncomfortable breathing
- Poor perfusion
- Muscle pain (crampiness)
- Burst or sustained vertigo or dizziness
- Sleep disturbance (particularly when sleeping within a few hours of eating, or lying on the left side)
- Extrasystoles
- Hot flashes
Even though many types of sick sinus syndrome produce no symptoms, a person may present with one or more of the following signs and symptoms:
- Stokes-Adams attacks – fainting due to asystole or ventricular fibrillation
- Dizziness or light-headedness
- Palpitations
- Chest pain or angina
- Shortness of breath
- Fatigue
- Headache
- Nausea
Coronary steal (with its symptoms termed coronary steal syndrome or cardiac steal syndrome) is a phenomenon where an alteration of circulation patterns leads to a reduction in the blood directed to the coronary circulation. It is caused when there is narrowing of the coronary arteries and a coronary vasodilator is used – "stealing" blood away from those parts of the heart. This happens as a result of the narrowed coronary arteries being always maximally dilated to compensate for the decreased upstream blood supply. Thus, dilating the resistance vessels in the coronary circulation causes blood to be shunted away from the coronary vessels supplying the ischemic zones, creating more ischemia.
Roemheld syndrome (RS), also known as Roemheld-Techlenburg-Ceconi-Syndrome or gastric-cardia, is a complex of gastrocardiac symptoms first described by Ludwig von Roemheld (1871–1938). It is a syndrome where maladies in the gastrointestinal tract or abdomen are found to be associated with cardiac symptoms like arrhythmias and benign palpitations. There is rarely a traceable cardiac source to the symptoms which may lead to a lengthy period of misdiagnosis.
Wellens' syndrome is an electrocardiographic manifestation of critical proximal left anterior descending (LAD) coronary artery stenosis in patients with unstable angina. It is characterized by symmetrical, often deep (>2 mm), T wave inversions in the anterior precordial leads. A less common variant is biphasic T wave inversions in the same leads.
First described by Hein J. J. Wellens and colleagues in 1982 in a subgroup of patients with unstable angina, it does not seem to be rare, appearing in 18% of patients in his original study. A subsequent prospective study identified this syndrome in 14% of patients at presentation and 60% of patients within the first 24 hours.
The presence of Wellens' syndrome carries significant diagnostic and prognostic value. All patients in the De Zwann's study with characteristic findings had more than 50% stenosis of the left anterior descending artery (mean = 85% stenosis) with complete or near-complete occlusion in 59%. In the original Wellens' study group, 75% of those with the typical syndrome manifestations had an anterior myocardial infarction. Sensitivity and specificity for significant (more or equal to 70%) stenosis of the LAD artery was found to be 69% and 89%, respectively, with a positive predictive value of 86%.
Wellens' sign has also been seen as a rare presentation of Takotsubo cardiomyopathy or stress cardiomyopathy.
Symptoms of Da Costa's syndrome include fatigue upon exertion, shortness of breath, palpitations, sweating, and chest pain. Physical examination reveals no physical abnormalities causing the symptoms.
Ludwig's angina is a fascial space infection with bilateral involvement of the submandibular, sublingual and submental spaces. The external signs may include bilateral lower facial edema around the mandible and upper neck. Intraoral signs may include a raised floor of mouth due to sublingual space involvement and posterior displacement of the tongue. Symptoms may include dysphagia, pain with swallowing, difficulty breathing, and pain.
Ludwig's angina should be treated urgently due to the airway being compromised. The infection may rapidly spread to other fascial spaces of the head and neck, further compromising the airway.
Symptoms in eosinophilc myocarditis are highly variable. They tend to reflect the many underlying disorders causing eosinophil dysfunction as well as the widely differing progression rates of cardiac damage. Before cardiac symptoms are detected, some 66% of cases have symptoms of a common cold and 33% have symptoms of asthma, rhinitis, urticarial, or other allergic disorder. Cardiac manifestations of eosinophilic myocarditis range from none to life-threatening conditions such as cardiogenic shock or sudden death due to abnormal heart rhythms. More commonly the presenting cardiac symptoms of the disorder are the same as those seen in other forms of heart disease: chest pain, shortness of breath, fatigue, chest palpitations, light headedness, and syncope. In its most extreme form, however, eosinophilic myocarditis can present as acute necrotizing eosinophilic myocarditis, i.e. with symptoms of chaotic and potentially lethal heart failure and heart arrhythmias. This rarest form of the disorder reflects a rapidly progressive and extensive eosinophilic infiltration of the heart that is accompanied by massive myocardial cell necrosis.
Hypereosinophilia (i.e. blood eosinophil counts at or above 1,500 per microliter) or, less commonly, eosinophilia (counts above 500 but below 1,500 per microliter) are found in the vast majority of cases of eosinophilic myocarditis and are valuable clues that point to this rather than other types of myocarditis or myocardial injuries. However, elevated blood eosinophil counts may not occur during the early phase of the disorder. Other, less specific laboratory findings implicate a cardiac disorder but not necessarily eosinophilic myocarditis. These include elevations in blood markers for systemic inflammation (e.g. C reactive protein, erythrocyte sedimentation rate), elevations in blood markers for cardiac injury (e.g. creatine kinase, troponins); and abnormal electrocardiograms ( mostly ST segment-T wave abnormalities).