Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The following are symptoms characteristic with individuals having the disorder. Individuals may display some, most, or all of these symptoms throughout the course of their life, though symptoms may vary with each patient.
- Abnormal hair (coarse, thick, brittle)
- Calvarial hypomineralization (soft skull)
- Y-shaped cataracts by 1–2 years of age
- Skeletal defects
- Hypertelorism (wide-set eyes)
- Facial dysmorphisms
- Late-closing fontanels
- Abnormal accumulation of proteins in the endoplasmic reticulum
- Scoliosis
- Broad forehead, nose
- Missing, small teeth or abnormal teeth positioning
- Poor skull calcification
- Flat foot
- Motor delay
- Abnormal vertebrae
- Prominent forehead and brow
- High nose bridge
- Capillary hemangioma
- Delayed tooth eruption
- Long upper lip groove
- Large mouth
- High arched palate
- Narrow hips and rib cage
- Thin lips
- Narrow and sloping shoulders
- Hyperpigmentation
- Hyperextensible joints
Onset of the disease is in neonatal development and infancy, and symptoms tend to become evident soon after birth.
This condition is a skeletal dysplasia characterized by short stature, mild brachydactyly, kyphoscoliosis, abnormal gait, enlarged knee joints, precocious osteoarthropathy, platyspondyly, delayed epiphyseal ossification, mild metaphyseal abnormalities, short stature and short and bowed legs. Intelligence is normal.
Some patients may manifest premature pubarche and hyperandrogenism.
Other features that may form part of the syndrome include precocious costal calcification, small iliac bones, short femoral necks, coxa vara, short halluces and fused vertebral bodies.
Gerodermia osteodysplastica is characterized by symptoms and features which affect the connective tissues, skin and skeletal system.
These are: wrinkly, loose skin over the face, abdomen, and extremites (hands, feet) on the dorsal sides usually worsened by chronic joint laxity and hyperextensibility; fragmented elastic fibers of the skin that are reduced in number, with disorientation of collagen fibers; osteopenia and osteoporosis, with associated fractures; malar hypoplasia (underdeveloped cheek bone), maxillary hypoplasia (underdeveloped upper jaw), mandibular prognathism (protrusion of the lower jaw and chin), bowed long bones, platyspondyly (flattened spine) related to vertebral collapse; kyphoscoliosis (scoliosis with kyphosis, or "hunch back"), metaphyseal peg (an unusual outgrowth of metaphyseal tissue which protrudes into the epiphyseal region of the bone, near the knee); and the overall physical effects and facial appearance of dwarfism with premature aging.
Other features and findings include: intrauterine growth retardation, congenital hip dislocations, winged scapulae (shoulder blades), pes planus (fallen arches), pseudoepiphyses of the second metacarpals (upper bone of the fingers), hypotelorism (close-set eyes), malformed ears,
developmental delay,
failure to thrive and abnormal electroencephalograph (EEG) readings.
Dental and orthodontal abnormalities in addition to maxillary hypoplasia and mandibular prognathism have also been observed in gerodermia osteodysplastica. Including malocclusion of the dental arches (the maxilla and mandible), radiological findings in some cases have indicated significant overgrowth of the mandibular premolar and molar roots;
hypercementosis (overproduction of cementum) of the molars and maxillary incisors; enlarged, funnel-shaped mandibular lingula (spiny structures on the ramus of the mandible); and a radiolucent effect on portions of many teeth, increasing their transparency to x-rays.
Because collagen plays an important role in the development of the body, people with Kniest Dysplasia will typically have their first symptoms at birth. These symptoms can include:.
- Musculoskeletal Problems
- Short limbs
- Shortened body trunk
- Flattened bones in the spine
- kyphoscoliosis
- Scoliosis (Lateral curvature of the spine)
- Early development of arthritis
- Respiratory problems
- Respiratory tract infection
- Difficulty breathing
- Eye problems
- Severe myopia (near-sightedness)
- Cataract (cloudiness in the lens of the eye)
- Hearing problems
- progressive hearing loss
- ear infections
Most symptoms are chronic and will continue to worsen as the individual ages. It is essential to have regular checkups with general doctors, orthopedist, ophthalmologists, and/or otorhinolaryngologists. This will help to detect whether there are any changes that could cause concern.
People who are affected by Liebenberg Syndrome suffer from three main symptoms:
1. Dysplasia (improper formation) of the bony components of the elbow
2. Abnormal shape of carpal bones
3. Brachydactyly, a symptom where the fingers and toes are shorter than normal.
Spondyloepimetaphyseal dysplasia, Pakistani type is a form of spondyloepimetaphyseal dysplasia involving "PAPSS2" (also known as "ATPSK2"). The condition is rare.
Campomelic dysplasia (CMD) is a rare genetic disorder characterized by bowing of the long bones and many other skeletal and extraskeletal features.
It is frequently lethal in the neonatal period due to respiratory insufficiency, but the severity of the disease is variable, and some patients survive into adulthood.
The name is derived from the Greek roots "campo" (or "campto"), meaning bent, and "melia", meaning limb.
An unusual aspect of the disease is that up to two-thirds of affected 46,XY genotypic males display a range of Disorders of Sexual Development (DSD) and genital ambiguities or may even develop as normal phenotypic females as in complete 46 XY sex reversal.
An atypical form of the disease with absence of bowed limbs is called, prosaically, acampomelic campomelic dysplasia (ACD) and is found in about 10% of patients, particularly those surviving the neonatal period.
Gerodermia osteodysplastica (GO), also called geroderma osteodysplasticum and Walt Disney dwarfism, is a rare autosomal recessive connective tissue disorder included in the spectrum of cutis laxa syndromes.
Usage of the name "Walt Disney dwarfism" is attributed to the first known case of the disorder, documented in a 1950 journal report, in which the authors described five affected members from a Swiss family as having the physical appearance of dwarves from a Walt Disney film.
The terms "geroderma" or "gerodermia" can be used interchangeably with "osteodysplastica" or "osteodysplasticum", with the term "hereditaria" sometimes appearing at the end.
While the definitive presentation of the disease is a patient having bowed lower limbs and sex reversal in 46,XY males, there are other clinical criteria that can be used, absent these characteristics, to make the diagnosis. Patients may present with underdeveloped shoulder blades, shortened and angulated lower limbs, a vertically oriented and narrow pelvis, an enlarged head, an undersized jaw, cleft palate, flat nasal bridge, low set ears, club feet, dislocated hips, 11 pairs of ribs instead of 12, or bone abnormalities in the neck and spine. Respiratory distress can be caused by an underdeveloped trachea which collapses on inhalation or by insufficient rib cage development.
Mandibuloacral dysplasia is a rare autosomal recessive syndrome characterized by mandibular hypoplasia, delayed cranial suture closure, dysplastic clavicles, abbreviated and club-shaped terminal phalanges, acroosteolysis, atrophy of the skin of the hands and feet, and typical facial changes.
Types include:
Cranio–lenticulo–sutural dysplasia (CLSD, or Boyadjiev-Jabs syndrome) is a neonatal/infancy disease caused by a disorder in the 14th chromosome. It is an autosomal recessive disorder, meaning that both recessive genes must be inherited from each parent in order for the disease to manifest itself. The disease causes a significant dilation of the endoplasmic reticulum in fibroblasts of the host with CLSD. Due to the distension of the endoplasmic reticulum, export of proteins (such as collagen) from the cell is disrupted.
The production of SEC23A protein is involved in the pathway of exporting collagen (the COPII pathway), but a missense mutation causes and underproduction of SEC23A which inhibits the pathway, affecting collagen secretion. This decrease in collagen secretion can lead to the bone defects that are also characteristic of the disease, such as skeletal dysplasia and under-ossification. Decreased collagen in CLSD-affected individuals contributes to improper bone formation, because collagen is a major protein in the extracellular matrix and contributes to its proper mineralization in bones. It has also been hypothesized that there are other defects in the genetic code besides SEC23A that contribute to the disorder.
Opsismodysplasia can be characterized by a delay in bone maturation, which refers to "bone aging", an expected sequence of developmental changes in the skeleton corresponding to the chronological age of a person. Factors such as gender and ethnicity also play a role in bone age assessment. The only indicator of physical development that can be applied from birth through mature adulthood is bone age. Specifically, the age and maturity of bone can be determined by its state of ossification, the age-related process whereby certain cartilaginous and soft tissue structures are transformed into bone. The condition of epiphyseal plates (growth plates) at the ends of the long bones (which includes those of the arms, hands, legs and feet) is another measurement of bone age. The evaluation of both ossification and the state of growth plates in children is often reached through radiography (X-rays) of the carpals (bones of the hand and wrist). In opsismodysplasia, the process of ossification in long bones can be disrupted by a failure of ossification centers (a center of organization in long bones, where cartilage cells designated to await and undergo ossification gather and align in rows) to form. This was observed in a 16-month-old boy with the disorder, who had no apparent ossification centers in the carpals (bones of the hand and wrist) or tarsals (bones of the foot). This was associated with an absence of ossification in these bones, as well as disfigurement of the hands and feet at age two. The boy also had no ossification occurring in the lower femur (thigh bone) and upper tibia (the shin bone).
Autosomal recessive multiple epiphyseal dysplasia (ARMED), also called epiphyseal dysplasia, multiple, 4 (EDM4), multiple epiphyseal dysplasia with clubfoot or –with bilayered patellae, is an autosomal recessive congenital disorder affecting cartilage and bone development. The disorder has relatively mild signs and symptoms, including joint pain, scoliosis, and malformations of the hands, feet, and knees.
Some affected individuals are born with an inward- and downward-turning foot (a clubfoot). An abnormality of the kneecap called a double-layered patella is also relatively common. Although some people with recessive multiple epiphyseal dysplasia have short stature as adults, most are of normal height. The incidence is unknown as many cases are not diagnosed due to mild symptoms.
Individuals affected by ischiopatellar dysplasia commonly have abnormalities of the patella and pelvic girdle, such as absent or delayed patellar and ischial ossification as well as infra-acetabular axe-cut notches. Patellae are typically absent or small in these individuals, when patellae are present they are small and laterally displaced or dislocated. In addition, abnormalities in other parts of their skeleton and dysmorphic features are common in those affected. Other features that have been identified in patients with ischiopatellar dysplasia include foot anomalies, specifically flat feet (pes planus), syndactylism of the toes, short fourth and fifth toes, and a large gap between the first and second toes, femur anomalies, cleft palate, and craniofacial dysmorphisms.
Infants with this condition have disproportionately short arms and legs with extra folds of skin. Other signs of the disorder include a narrow chest, small ribs, underdeveloped lungs, and an enlarged head with a large forehead and prominent, wide-spaced eyes.
Thanatophoric dysplasia is a lethal skeletal dysplasia divided into two subtypes. Type I is characterized by extreme rhizomelia, bowed long bones, narrow thorax, a relatively large head, normal trunk length and absent cloverleaf skull. The spine shows platyspondyly, the cranium has a short base, and, frequently, the foramen magnum is decreased in size. The forehead is prominent, and hypertelorism and a saddle nose may be present. Hands and feet are normal, but fingers are short. Type II is characterized by short, straight long bones and cloverleaf skull.
It presents with typical telephone handled shaped long bones and a H-shaped vertebrae.
Liebenberg Syndrome is a rare autosomal genetic disease that involves a deletion mutation upstream of the PITX1 gene, which is one that's responsible for the body's organization, specifically in forming lower limbs. In animal studies, when this deletion was introduced to developing birds, their wing buds were noted to take on limb-like structures.
The condition was first described by Dr. F. Liebenberg in 1973 while he followed multiple generations of a South African family, but it has since been noticed in other family lineages across the world.
Opsismodysplasia is a type of skeletal dysplasia (a bone disease that interferes with bone development) first described by Zonana and associates in 1977, and designated under its current name by Maroteaux (1984). Derived from the Greek "opsismos" ("late"), the name "opsismodysplasia" describes a delay in bone maturation. In addition to this delay, the disorder is characterized by (short or undersized bones), particularly of the hands and feet, delay of ossification (bone cell formation), platyspondyly (flattened vertebrae), irregular metaphyses, an array of facial aberrations and respiratory distress related to chronic infection. Opsismodysplasia is congenital, being apparent at birth. It has a variable mortality, with some affected individuals living to adulthood. The disorder is rare, with an incidence of less than 1 per 1,000,000 worldwide. It is inherited in an autosomal recessive pattern, which means the defective (mutated) gene that causes the disorder is located on an autosome, and the disorder occurs when two copies of this defective gene are inherited. No specific gene has been found to be associated with the disorder. It is similar to spondylometaphyseal dysplasia, Sedaghatian type.
Ischiopatellar dysplasia is a rare autosomal dominant disorder characterized by a hypoplasia of the patellae as well as other bone anomalies, especially concerning the pelvis and feet.
Kniest Dysplasia is a rare form of dwarfism caused by a mutation in the COL2A1 gene on chromosome 12. The COL2A1 gene is responsible for producing type II collagen. The mutation of COL2A1 gene leads to abnormal skeletal growth and problems with hearing and vision. What characterizes kniest dysplasia from other type II Osteochondrodysplasia is the level of severity and the dumb-bell shape of shortened long tubular bones. This condition was first diagnosed by Dr. Wilhelm Kniest in 1952. Dr. Kniest noticed that his 50 year old patient was having difficulties with restricted joint mobility. The patient had a short stature and was also suffering from blindness. Upon analysis of the patient's DNA, Dr. Kniest discovered that a mutation had occurred at a splice site of the COL2A1 gene. This condition is very rare and occurs less than 1 in 1,000,000 people. Males and females have equal chances of having this condition. Currently, there is no cure for kniest dysplasia. Alternative names for Kniest Dysplasia can include Kniest Syndrome, Swiss Cheese Cartilage Syndrome, Kniest Chondrodystrophy, or Metatrophic Dwarfism Type II.
Children with autosomal dominant MED experience joint pain and fatigue after exercising. Their x-rays show small and irregular ossifications centers, most apparent in the hips and knees. A waddling gait may develop. Flat feet are very common.
The spine is normal but may have a few irregularities, such as scoliosis. There are very small capital femoral epiphyses and hypoplastic, poorly formed acetabular roofs. Knees have metaphyseal widening and irregularity while hands have brachydactyly (short fingers) and proximal metacarpal rounding. By adulthood, people with MED are of short stature or in the low range of normal and have short limbs relative to their trunks. Frequently, movement becomes limited at the major joints, especially at the elbows and hips. However, loose knee and finger joints can occur. Signs of osteoarthritis usually begin in early adulthood.
Children with recessive MED experience joint pain, particularly of the hips and knees, and commonly have deformities of the hands, feet, knees, or vertebral column (like scoliosis). Approximately 50% of affected children have abnormal findings at birth (such as club foot or twisted metatarsals, cleft palate, inward curving fingers due to underdeveloped bones and brachydactyly, or ear swelling caused by injury during birth). Height is in the normal range before puberty. As adults, people with recessive MED are only slightly more diminished in stature, but within the normal range. Lateral knee radiography can show multi-layered patellae.
Spondyloepimetaphyseal dysplasia is a genetic condition affecting the bones.
Types include:
- Spondyloepimetaphyseal dysplasia, Strudwick type
- Spondyloepiphyseal dysplasia congenita
- Spondyloepimetaphyseal dysplasia, Pakistani type
Fingernails and toenails may be thick, abnormally shaped, discolored, ridged, slow-growing, or brittle. The cuticles may be prone to infections.
Individuals affected by an ED syndrome frequently have abnormalities of the hair follicles. Scalp and body hair may be thin, sparse, and very light in color, even though beard growth in affected males may be normal. The hair may grow very slowly or sporadically and it may be excessively fragile, curly, or even twisted.
Infants with type 1 thanatophoric dysplasia also have curved thigh bones, flattened bones of the spine (platyspondyly) and shortened thoracic ribs. Note: Prenatal ultra-sound images of the ribs sometimes appear asymmetrical when in fact they are not. In certain cases, this has caused a misdiagnosis of Osteogenisis Imperfecta (OI) type II.
An unusual head shape called kleeblattschädel ("cloverleaf skull") can be seen with type 2 thanatophoric dysplasia.
On radiographs, streaks of low density are seen projecting through the diaphyses into the epiphyses of the long bones, due to ectopic cartilage deposits. With age, the cartilage may calcify in the typical "snowflake" pattern.