Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Anemia goes undetected in many people and symptoms can be minor. The symptoms can be related to an underlying cause or the anemia itself.
Most commonly, people with anemia report feelings of weakness or tired, and sometimes poor concentration. They may also report shortness of breath on exertion. In very severe anemia, the body may compensate for the lack of oxygen-carrying capability of the blood by increasing cardiac output. The patient may have symptoms related to this, such as palpitations, angina (if pre-existing heart disease is present), intermittent claudication of the legs, and symptoms of heart failure.
On examination, the signs exhibited may include pallor (pale skin, lining mucosa, conjunctiva and nail beds), but this is not a reliable sign. There may be signs of specific causes of anemia, e.g., koilonychia (in iron deficiency), jaundice (when anemia results from abnormal break down of red blood cells — in hemolytic anemia), bone deformities (found in thalassemia major) or leg ulcers (seen in sickle-cell disease).
In severe anemia, there may be signs of a hyperdynamic circulation: tachycardia (a fast heart rate), bounding pulse, flow murmurs, and cardiac ventricular hypertrophy (enlargement). There may be signs of heart failure.
Pica, the consumption of non-food items such as ice, but also paper, wax, or grass, and even hair or dirt, may be a symptom of iron deficiency, although it occurs often in those who have normal levels of hemoglobin.
Chronic anemia may result in behavioral disturbances in children as a direct result of impaired neurological development in infants, and reduced academic performance in children of school age. Restless legs syndrome is more common in those with iron-deficiency anemia.
Symptoms of sideroblastic anemia include skin paleness, fatigue, dizziness, and enlarged spleen and liver. Heart disease, liver damage, and kidney failure can result from iron buildup in these organs.
Microcytic anaemia is any of several types of anaemia characterized by small red blood cells (called microcytes). The normal mean corpuscular volume (abbreviated to MCV on full blood count results) is 80-100 fL, with smaller cells (100 fL) as macrocytic (the latter occur in macrocytic anemia).The MCV is the average red blood cell size.
In microcytic anaemia, the red blood cells (erythrocytes) are usually also hypochromic, meaning that the red blood cells appear paler than usual. This is reflected by a lower-than-normal mean corpuscular hemoglobin concentration (MCHC), a measure representing the amount of hemoglobin per unit volume of fluid inside the cell; normally about 320-360 g/L or 32-36 g/dL. Typically, therefore, anemia of this category is described as "microcytic, hypochromic anaemia".
Sideroblastic anemia is typically divided into subtypes based on its cause.
- Hereditary or congenital sideroblastic anemia may be X-linked or autosomal.
GLRX5 has also been implicated.
- Acquired, or secondary, sideroblastic anemia develops after birth and is divided according to its cause.
Typical causes of microcytic anemia include:
- Childhood
- Iron deficiency anemia, by far the most common cause of anemia in general and of microcytic anemia in particular
- Thalassemia
- Adulthood
- Iron deficiency anemia
- Sideroblastic anemia, In congenital sideroblastic anemia the MCV (mean corpuscular volume) is either low or normal. In contrast, the MCV is usually high in the much more common acquired sideroblastic anemia.
- Anemia of chronic disease, although this more typically causes normochromic, normocytic anemia. Microcytic anemia has been discussed by Weng et al.
- Lead poisoning
- Vitamin B (pyridoxine) deficiency
Other causes that are typically thought of as causing normocytic anemia or macrocytic anemia must also be considered, and the presence of two or more causes of anemia can distort the typical picture.
There are five main causes of microcytic anemia forming the acronym TAILS. Thalassemia, Anemia of chronic disease, Iron deficiency, Lead poisoning and Congenital sideroblastic anemia. Only the first three are common in most parts of the world. In theory, these three can be differentiated by their red blood cell (RBC) morphologies. Anemia of chronic disease shows unremarkable RBCs, iron deficiency shows anisocytosis, anisochromia and elliptocytosis, and thalessemias demonstrate target cells and coarse basophilic stippling. In practice though elliptocytes and anisocytosis are often seen in thalessemia and target cells occasionally in iron deficiency. All three may show unremarkable RBC morphology. Coarse basophlic stippling is one reliable morphologic finding of thalessemia which does not appear in iron deficiency or anemia of chronic disease. The patient should be in an ethnically at risk group and the diagnosis is not confirmed without a confirmatory method such as hemoglobin HPLC, H body staining, molecular testing or another reliable method. Course basophlic stippling occurs in other cases as seen in Table 1
Microcytosis is a condition in which red blood cells are unusually small as measured by their mean corpuscular volume.
It is also known as "microcythemia". When associated with anemia, it is known as microcytic anemia.
Iron-deficiency anemia is characterized by the sign of pallor (reduced oxyhemoglobin in skin or mucous membranes), and the symptoms of fatigue, lightheadedness, and weakness. None of these symptoms (or any of the others below) are sensitive or specific. Pallor of mucous membranes (primarily the conjunctiva) in children suggests anemia with the best correlation to the disease, but in a large study was found to be only 28% sensitive and 87% specific (with high predictive value) in distinguishing children with anemia [hemoglobin (Hb) <11.0 g/dl] and 49% sensitive and 79% specific in distinguishing severe anemia (Hb < 7.0 g/dl). Thus, this sign is reasonably predictive when present, but not helpful when absent, as only one-third to one-half of children who are anemic (depending on severity) will show pallor.
Because iron-deficiency anemia tends to develop slowly, adaptation occurs to the systemic effects that anemia causes, and the disease often goes unrecognized for some time. In severe cases, dyspnea can occur. Pica may also develop; pagophagia has been suggested to be "the most specific for iron deficiency."
Other possible symptoms and signs of iron-deficiency anemia include:
A dimorphic appearance on a peripheral blood smear occurs when there are two simultaneous populations of red blood cells, typically of different size and hemoglobin content (this last feature affecting the color of the red blood cell on a stained peripheral blood smear). For example, a person recently transfused for iron deficiency would have small, pale, iron deficient red blood cells (RBCs) and the donor RBCs of normal size and color. Similarly, a person transfused for severe folate or vitamin B12 deficiency would have two cell populations, but, in this case, the patient's RBCs would be larger and paler than the donor's RBCs. A person with sideroblastic anemia (a defect in heme synthesis, commonly caused by alcoholism, but also drugs/toxins, nutritional deficiencies, a few acquired and rare congenital diseases) can have a dimorphic smear from the sideroblastic anemia alone. Evidence for multiple causes appears with an elevated RBC distribution width (RDW), indicating a wider-than-normal range of red cell sizes, also seen in common nutritional anemia.
The term macrocytic is from Greek words meaning "large cell". A macrocytic class of anemia is an "anemia" (defined as blood with an insufficient concentration of hemoglobin) in which the red blood cells (erythrocytes) are larger than their normal volume. The normal erythrocyte volume in humans is about 80 to 100 femtoliters (fL= 10 L). In metric terms the size is given in equivalent cubic micrometers (1 μm = 1 fL). The condition of having erythrocytes which (on average) are too large, is called macrocytosis. In contrast, in microcytic anemia, the erythrocytes are smaller than normal.
In a macrocytic anemia, the larger red cells are always associated with insufficient "numbers" of cells and often also insufficient hemoglobin content per cell. Both of these factors work to the opposite effect of larger cell size, to finally result in a "total blood hemoglobin concentration" that is less than normal (i.e., anemia).
Macrocytic anemia is not a disease in the sense of having a single pathology but, rather, is a condition. As such, it is the class name for a set of pathologies that all produce somewhat the same red blood cell abnormality. Many specific pathologies are known which result in macrocytic-type anemias. Some of these produce slightly different sets of appearances in blood cells that are detectable from red and white cell morphology, and others are only detectable with chemical testing.
Iron-deficiency anemia is associated with poor neurological development, including decreased learning ability and altered motor functions. Causation has not been established, but there is a possible long-term impact from these neurological issues.
Normocytic anemia is a type of anemia and is a common issue that occurs for men and women typically over 85 years old. Its prevalence increases with age, reaching 44 percent in men older than 85 years.
A normocytic anemia is defined as an anemia with a mean corpuscular volume (MCV) of 80–100 which is the normal range. However, the hematocrit and hemoglobin is decreased.
Hypochromic anemia occurs in patients with hypochromic microcytic anemia with iron overload. The condition is autosomal recessive and is caused by mutations in the SLC11A2 gene. The condition prevents red blood cells from accessing iron in the blood, which causes anemia that is apparent at birth. It can lead to pallor, fatigue, and slow growth. The iron overload aspect of the disorder means that the iron accumulates in the liver and can cause liver impairment in adolescence or early adulthood.
It also occurs in patients with hereditary iron refractory iron-deficiency anemia (IRIDA). Patients with IRIDA have very low serum iron and transferrin saturation, but their serum ferritin is normal or high. The anemia is usually moderate in severity and presents later in childhood.
Hypochromic anemia is also caused by thalassemia and congenital disorders like Benjamin anemia.
Microcytic anemia is not caused by reduced DNA synthesis.
Thalassemia can cause microcytosis. Depending upon how the terms are being defined, thalassemia can be considered a cause of microcytic anemia, or it can be considered a cause of microcytosis but not a cause of microcytic anemia.
There are many causes of microcytosis, which is essentially only a descriptor. Cells can be small because of mutations in the formation of blood cells (hereditary microcytosis) or because they are not filled with enough hemoglobin, as in iron-deficiency-associated microcytosis.
Red blood cells can be characterised by their haemoglobin content as well as by their size. The haemoglobin content is referred to as the cell's colour. Therefore, there are both "normochromic microcytotic red cells" and "hypochromic, microcytotic red cells". The normochromic cells have a normal concentration of haemoglobin, and are therefore 'red enough' while the hypochromic cells do not; thus the value of the mean corpuscular hemoglobin concentration.
Mild macrocytosis is a common finding associated with rapid blood restoration or production, since in general, "fresh" or newly produced red cells (reticulocytes) are larger than the mean (average) size, due to slow shrinkage of normal cells over a normal red cell circulating lifetime. Thus, chronic obstructive pulmonary disease (COPD), in which red cells are rapidly produced in response to low oxygen levels in the blood, often produces mild macrocytosis. Also, rapid blood replacement from the marrow after a traumatic blood loss, or rapid red blood cell turnover from rapid hemolysis (G6PD deficiency), also often produces mild macrocytosis in the associated anemia.
Anisocytosis is a medical term meaning that a patient's red blood cells are of unequal size. This is commonly found in anemia and other blood conditions. False diagnostic flagging may be triggered by an elevated WBC count, agglutinated RBCs, RBC fragments, giant platelets or platelet clumps. In addition, it is a characteristic feature of bovine blood.
The red cell distribution width (RDW) is a measurement of anisocytosis and is calculated as a coefficient of variation of the distribution of RBC volumes divided by the mean corpuscular volume (MCV)
Three main forms have been described: thalassemia major, thalassemia intermedia, and thalassemia minor. All people with thalassemia are susceptible to health complications that involve the spleen (which is often enlarged and frequently removed) and gallstones. These complications are mostly found in thalassemia major and intermedia patients. Individuals with beta thalassemia major usually present within the first two years of life with severe anemia, poor growth, and skeletal abnormalities during infancy. Untreated thalassemia major eventually leads to death, usually by heart failure; therefore, birth screening is very important.
Excess iron causes serious complications within the liver, heart, and endocrine glands. Severe symptoms include liver cirrhosis, liver fibrosis, and in extreme cases, liver cancer. Heart failure, growth impairment, diabetes and osteoporosis are life-threatening contributors brought upon by TM. The main cardiac abnormalities seen to have resulted from thalassemia and iron overload include left ventricular systolic and diastolic dysfunction, pulmonary hypertension, valveulopathies, arrhythmias, and pericarditis. Increased gastrointestinal iron absorption is seen in all grades of beta thalassemia and increased red blood cell destruction by the spleen due to ineffective erythropoiesis further releases additional iron into the bloodstream.
Hypochromic anemia may be caused by vitamin B6 deficiency from a low iron intake, diminished iron absorption, or excessive iron loss. It can also be caused by infections (e.g. hookworms) or other diseases (i.e. anemia of chronic disease), therapeutic drugs, copper toxicity, and lead poisoning. One acquired form of anemia is also known as Faber's syndrome. It may also occur from severe stomach or intestinal bleeding caused by ulcers or medications such as aspirin or bleeding from hemorrhoids.
Anemia of chronic disease is usually mild but can be severe. It is usually normocytic, but can be microcytic. The presence of both anemia of chronic disease and dietary iron deficiency in the same patient results in a more severe anemia.
Hereditary spherocytosis (also known as Minkowski–Chauffard syndrome) abnormality of erythrocytes. The disorder is caused by mutations in genes relating to membrane proteins that allow for the erythrocytes to change shape. The abnormal erythrocytes are sphere-shaped (spherocytosis) rather than the normal biconcave disk shaped. Dysfunctional membrane proteins interfere with the cell's ability to be flexible to travel from the arteries to the smaller capillaries. This difference in shape also makes the red blood cells more prone to rupture. Cells with these dysfunctional proteins are taken for degradation at the spleen. This shortage of erythrocytes results in hemolytic anemia.
It was first described in 1871 and is the most common cause of inherited hemolysis in Europe and North America within the Caucasian population, with an incidence of 1 in 5000 births. The clinical severity of HS varies from symptom-free
carrier to severe haemolysis because the disorder exhibits incomplete penetrance in its expression.
Symptoms include anemia, jaundice, splenomegaly, and fatigue. On a blood smear, Howell-Jolly bodies may be seen within red blood cells. Primary treatment for patients with symptomatic HS has been total splenectomy, which eliminates the hemolytic process, allowing normal hemoglobin, reticulocyte and bilirubin levels.
As in non-hereditary spherocytosis, the spleen destroys the spherocytes. This process of red blood cells rupturing directly results in varying degrees of anemia (causing a pale appearance and fatigue), high levels of bilirubin in the blood (causing jaundice), and splenomegaly.
Acute cases can threaten to cause hypoxia through anemia and acute kernicterus through high blood levels of bilirubin, particularly in newborns. Most cases can be detected soon after birth. An adult with this disease should have their children tested, although the presence of the disease in children is usually noticed soon after birth. Occasionally, the disease will go unnoticed until the child is about 4 or 5 years of age. A person may also be a carrier of the disease and show no signs or symptoms of the disease. Other symptoms may include abdominal pain that could lead to the removal of the spleen and/or gallbladder.
Chronic symptoms include anemia, increased blood viscosity, and splenomegaly, and some symptoms are still unknown at this stage. Furthermore, the detritus of the broken-down blood cells – unconjugated or indirect bilirubin – accumulates in the gallbladder, and can cause pigmented gallstones to develop. In chronic patients, an infection or other illness can cause an increase in the destruction of red blood cells, resulting in the appearance of acute symptoms, a "hemolytic crisis". Spherocytosis patients who are heterozygous for a hemochromatosis gene may suffer from iron overload despite the hemochromatosis genes being recessive.
Limiting some microbes' access to iron can reduce their virulence, thereby potentially reducing the severity of infection. Blood transfusion to patients with anemia of chronic disease is associated with a higher mortality, supporting the concept.
An individual with delta-beta thalassemia is usually asymptomatic, however microcytosis can occur where the red blood cells are abnormally small.
Thalassemias are inherited blood disorders characterized by abnormal hemoglobin production. Symptoms depend on the type and can vary from none to severe. Often there is mild to severe anemia (low red blood cells). Anemia can result in feeling tired and pale skin. There may also be bone problems, an enlarged spleen, yellowish skin, dark urine, and among children slow growth.
Thalassemias are genetic disorders inherited from a person's parents. There are two main types, alpha thalassemia and beta thalassemia. The severity of alpha and beta thalassemia depends on how many of the four genes for alpha globin or two genes for beta globin are missing. Diagnosis is typically by blood tests including a complete blood count, special hemoglobin tests, and genetic tests. Diagnosis may occur before birth through prenatal testing.
Treatment depends on the type and severity. Treatment for those with more severe disease often includes regular blood transfusions, iron chelation, and folic acid. Iron chelation may be done with deferoxamine or deferasirox. Occasionally, a bone marrow transplant may be an option. Complications may include iron overload from the transfusions with resulting heart or liver disease, infections, and osteoporosis. If the spleen becomes overly enlarged, surgical removal may be required.
As of 2013, thalassemia occurs in about 280 million people, with about 439,000 having severe disease. It is most common among people of Italian, Greek, Middle Eastern, South Asian, and African descent. Males and females have similar rates of disease. It resulted in 16,800 deaths in 2015, down from 36,000 deaths in 1990. Those who have minor degrees of thalassemia, similar to those with sickle-cell trait, have some protection against malaria, explaining why they are more common in regions of the world where malaria exists.
Delta-beta thalassemia is a form of thalassemia, and is autosomal recessive in terms of heredity. It is associated with "hemoglobin subunit delta"
Anisocytosis is identified by RDW and is classified according to the size of RBC measured by MCV. According to this, it can be divided into
- Anisocytosis with microcytosis – Iron deficiency, sickle cell anemia
- Anisocytosis with macrocytosis – Folate or vitamin B deficiency, autoimmune hemolytic anemia, cytotoxic chemotherapy, chronic liver disease, myelodysplastic syndrome
Increased RDW is seen in iron deficiency anemia and decreased or normal in thalassemia major (Cooley's anemia), thalassemia intermedia
- Anisocytosis with normal RBC size – Early iron, vit B12 or folate deficiency, dimorphic anemia, Sickle cell disease, chronic liver disease, Myelodysplastic syndrome