Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Physiological nystagmus is a form of involuntary eye movement that is part of the vestibulo-ocular reflex (VOR), characterized by alternating smooth pursuit in one direction and saccadic movement in the other direction.
Pathological nystagmus is characterized by "excessive drifts of stationary retinal images that degrades vision and may produce illusory motion of the seen world: oscillopsia (an exception is congenital nystagmus)".
When nystagmus occurs without fulfilling its normal function, it is pathologic (deviating from the healthy or normal condition). Pathological nystagmus is the result of damage to one or more components of the vestibular system, including the semicircular canals, otolith organs, and the vestibulocerebellum.
Pathological nystagmus generally causes a degree of vision impairment, although the severity of such impairment varies widely. Also, many blind people have nystagmus, which is one reason that some wear dark glasses.
"Cross-fixation congenital esotropia", also called "Cianci's syndrome" is a particular type of large-angle infantile esotropia associated with tight medius rectus muscles. With the tight muscles, which hinder adduction, there is a constant inward eye turn. The patient cross-fixates, that is, to fixate objects on the left, the patient looks across the nose with the right eye, and vice versa. The patient tends to adopt a head turn, turning the head to the right to better see objects in the left visual field and turning the head to the left to see those in the right visual field. Binasal occlusion can be used to discourage cross-fixation. However, the management of cross-fixation congenital esotropia usually involves surgery.
A rostral lesion within the midbrain may affect the convergence center thus causing bilateral divergence of the eyes which is known as the WEBINO syndrome (Wall Eyed Bilateral INO) as each eye looks at the opposite "wall".
If the lesion affects the PPRF (or the abducens nucleus) and the MLF on the same side (the MLF having crossed from the opposite side), then the "one and a half syndrome" occurs which, simply put, involves paralysis of all conjugate horizontal eye movements other than abduction of the eye on the opposite side to the lesion.
Clinically Infantile esotropia must be distinguished from:
1. VIth Cranial nerve or abducens palsy
2. Nystagmus Blockage Syndrome
3. Esotropia arising secondary to central nervous system abnormalities (in cerebral palsy for example)
4. Primary Constant esotropia
5. Duane's Syndrome
The disorder is caused by injury or dysfunction in the medial longitudinal fasciculus (MLF), a heavily myelinated tract that allows conjugate eye movement by connecting the paramedian pontine reticular formation (PPRF)-abducens nucleus complex of the contralateral side to the oculomotor nucleus of the ipsilateral side.
In young patients with bilateral INO, multiple sclerosis is often the cause. In older patients with one-sided lesions a stroke is a distinct possibility. Other causes are possible.
The optokinetic response is a combination of a slow-phase and fast-phase eye movements. It is seen when an individual follows a moving object with their eyes, which then moves out of the field of vision at which point their eye moves back to the position it was in when it first saw the object. The reflex develops at about 6 months of age.
Optokinetic nystagmus (OKN) is nystagmus that occurs in response to a rotation movement. It is present normally. The optokinetic response allows the eye to follow objects in motion when the head remains stationary (e.g., observing individual telephone poles on the side of the road as one travels by them in a car, or observing stationary objects while walking past them).
If an optokinetic drum is available, rotate the drum in front of the patient. Ask the patient to look at the drum as you rotate it slowly. If an optokinetic drum is not available, move a strip of paper with alternating 2-inch black and white strips across the patient's visual field. Pass it in front of the patient's eye at reading distance while instructing the patient to look at it as it rapidly moves by. With normal vision, a nystagmus develops in both adults and infants. The nystagmus consists of initial slow phases in the direction of the stimulus (smooth pursuits), followed by fast, corrective phases (saccade). Presence of nystagmus indicates an intact visual pathway.
Another effective method is to hold a mirror in front of the patient and slowly rotate the mirror to either side of the patient. The patient with an intact visual pathway will maintain eye contact with herself or himself. This compelling optokinetic stimulus forces reflex slow eye movements.
OKN can be used as a crude assessment of the visual system, particularly in infants. When factitious blindness or malingering is suspected, check for optokinetic nystagmus to determine whether there is an intact visual pathway.
Amaurotic nystagmus is defined as the nystagmus associated with blindness or the central vision defects. It is characterized by the pendular or jerky movements of the eyes in the patients who have visual impairement for a long period of time.
Symptoms of conjugate gaze palsies include the impairment of gaze in various directions and different types of movement, depending on the type of gaze palsy. Signs of a person with a gaze palsy may be frequent movement of the head instead of the eyes. For example, a person with a horizontal saccadic palsy may jerk their head around while watching a movie or high action event instead of keeping their head steady and moving their eyes, which usually goes unnoticed. Someone with a nonselective horizontal gaze palsy may slowly rotate their head back and forth while reading a book instead of slowly scanning their eyes across the page.
Pendular nystagmus is a sinusoidal oscillation, which refers to the waveform of involuntary eye movements that may occur in any direction. It is characterized by the multidimensional slow eye movements of the eyes (1 Hz frequency) with an equal velocity in each direction that resembles the trajectory of a pendulum. These pattern of these movements may differ between the two eyes. Depending upon the pattern of movements, pendular nystagmus has been divided into different subtypes such as congenital nystagmus, acquired pendular nystagmus, and amaurotic nystagmus.
Conjugate gaze palsies can be classified into palsies affecting horizontal gaze and vertical gaze.
The effects a coloboma has on the vision can be mild or more severe depending on the size and location of the gap. If, for example, only a small part of the iris is missing, vision may be normal, whereas if a large part of the retina or optic nerve is missing, vision may be poor and a large part of the visual field may be missing. This is more likely to cause problems with mobility if the lower visual field is absent. Other conditions can be associated with a coloboma. Sometimes, the eye may be reduced in size, a condition called microphthalmia. Glaucoma, nystagmus, scotoma, or strabismus may also occur.
Cortical visual impairment (CVI) is a form of visual impairment that is caused by a brain problem rather than an eye problem. (The latter is sometimes termed "ocular visual impairment" when discussed in contrast to cortical visual impairment.) Some people have both CVI and a form of ocular visual impairment.
CVI is also sometimes known as cortical blindness, although most people with CVI are not totally blind. The term neurological visual impairment (NVI) covers both CVI and total cortical blindness. Delayed visual maturation, another form of NVI, is similar to CVI, except the child's visual difficulties resolve in a few months. Though the vision of a person with CVI may change, it rarely if ever becomes totally normal.
The major causes of CVI are as follows: asphyxia, hypoxia (a lack of sufficient oxygen in the body’s blood cells), or ischemia (not enough blood supply to the brain), all of which may occur during the birth process; developmental brain defects; head injury; hydrocephalus (when the cerebrospinal fluid does not circulate properly around the brain, and collects in the head, putting pressure on the brain); a stroke involving the occipital lobe; and infections of the central nervous system, such as meningitis and encephalitis.
Symptoms of CVI usually include several (but not necessarily all) of the following:
- The person with CVI exhibits variable vision. Visual ability can change from one day to the next but it can also fluctuate from minute to minute, especially when the person is tired. When undertaking critical activities, people with CVI should be prepared for their vision to fluctuate, by taking precautions such as always carrying a white cane even if they don't always use it to the full, or always having very large print available, just in case it's needed. (For example, consider the consequences of losing vision while giving a public speech). Managing fatigue can reduce fluctuations but does not eliminate them. Changes in environment, even minor, are mostly responsible for what appears to be variable vision.
- One eye may perform significantly worse than the other, and depth perception can be very limited (although not necessarily zero).
- The field of view may be severely limited. The best vision might be in the centre (like tunnel vision) but more often it is at some other point, and it is difficult to tell what the person is really looking at. Note that if the person also has a common ocular visual impairment such as nystagmus then this can also affect which part(s) of the visual field are best. (Sometimes there exists a certain gaze direction which minimises the nystagmus, called a "null point.")
- Even though the field of view may be very narrow indeed, it is often possible for the person to detect and track movement. Movement is handled by the 'V5' part of the visual cortex, which may have escaped the damage. Sometimes a moving object can be seen better than a stationary one; at other times the person can sense movement but cannot identify what is moving. (This can be annoying if the movement is prolonged, and to escape the annoyance the person may have to either gaze right at the movement or else obscure it.) Sometimes it is possible for a person with CVI to see things while moving their gaze around that they didn't detect when stationary. However, movement that is too fast can be hard to track; some people find that fast-moving objects "disappear." Materials with reflective properties, which can simulate movement, may be easier for a person with CVI to see. However, too many reflections can be confusing (see cognitive overload).
- Some objects may be easier to see than others. For example, the person may have difficulty recognising faces or facial expressions but have fewer problems with written materials. This is presumably due to the different way that the brain processes different things.
- Colour and contrast are important. The brain's colour processing is distributed in such a way that it is more difficult to damage, so people with CVI usually retain full perception of colour. This can be used to advantage by colour-coding objects that might be hard to identify otherwise. Sometimes yellow and red objects are easier to see, as long as this does not result in poor contrast between the object and the background.
- People with CVI strongly prefer a simplified view. When dealing with text, for example, the person might prefer to see only a small amount of it at once. People with CVI frequently hold text close to their eyes, both to make the text appear larger and to minimise the amount they must look at. This also ensures that important things such as letters are not completely hidden behind any scotomas (small defects in parts of the functioning visual field), and reduces the chances of getting lost in the text. However, the simplification of the view should not be done in such a way that it requires too rapid a movement to navigate around a large document, since too much motion can cause other problems (see above).
- In viewing an array of objects, people with CVI can more easily see them if they only have to look at one or two at a time. People with CVI also see familiar objects more easily than new ones. Placing objects against a plain background also makes them easier for the person with CVI to see.
- For the same reason (simplified view), the person may also dislike crowded rooms and other situations where their functioning is dependent on making sense of a lot of visual 'clutter'.
- Visual processing can take a lot of effort. Often the person has to make a conscious choice about how to divide mental effort between making sense of visual data and performing other tasks. For some people, maintaining eye contact is difficult, which can create problems in Western culture (for example, bonding can be difficult for some parents who have an infant with CVI, and lack of contact in an older child can cause others to regard him or her with suspicion).
- It can also be difficult for some people with CVI to look at an object and reach for it at the same time. Looking and reaching are sometimes accomplished as two separate acts: look, then look away and reach.
- People with CVI can sometimes benefit from a form of blindsight, which manifests itself as a kind of awareness of one's surroundings that cannot consciously be explained (for example, the person correctly guesses what they should do in order to avoid an obstacle but does not actually see that obstacle). However, this cannot be relied on to work all the time. In contrast, some people with CVI exhibit spatial difficulties and may have trouble moving about in their environment.
- Approximately one third of people with CVI have some photophobia. It can take longer than usual to adjust to large changes in light level, and flash photography can be painful. On the other hand, CVI can also in some cases cause a desire to gaze compulsively at light sources, including such things as candle flames and fluorescent overhead lights. The use of good task lighting (especially low-temperature lamps which can be placed at very close range) is often beneficial.
- Although people (with or without CVI) generally assume that they see things as they really are, in reality the brain may be doing a certain amount of guessing and "filling in", which is why people sometimes think they see things that turn out on closer inspection not to be what they seemed. This can occur more frequently when a person has CVI. Hence, a person with CVI can look at an optical illusion or abstract picture and perceive something that is significantly different from what a person without CVI will perceive.
The presence of CVI does not necessarily mean that the person's brain is damaged in any other way, but it can often be accompanied by other neurological problems, the most common being epilepsy.
Typically a coloboma appears oval or comet shaped with round end towards the centre. There may be a few vessels (retinal or choroidal) at the edges. The surface may have irregular depression.
The syndrome is frequently noticed first in children around six months of age by their photophobic activity and/or their nystagmus. The nystagmus becomes less noticeable with age but the other symptoms of the syndrome become more relevant as school age approaches. Visual acuity and stability of the eye motions generally improve during the first 6–7 years of life (but remain near 20/200).
The congenital forms of the condition are considered stationary and do not worsen with age.
The five symptoms associated with achromatopsia/dyschromatopsia are:
- Achromatopsia
- Amblyopia (reduced visual acuity)
- Hemeralopia (with the subject exhibiting photophobia)
- Nystagmus
- Iris operating abnormalities
The syndrome of achromatopsia/dyschromatopsia is poorly described in current medical and neuro-ophthalmological texts. It became a common term following the popular book by the neuroscientist Oliver Sacks, ""The Island of the Colorblind"" in 1997. Up to that time most color-blind subjects were described as achromats or achromatopes. Those with a lesser degree of color perception abnormality were described as either protanopes, deuteranopes or tetartanopes (historically tritanopes).
Achromatopsia has also been called rod monochromacy and total congenital color blindness. Individuals with the congenital form of this condition show complete absence of cone cell activity via electroretinography at high light levels. There are at least four genetic causes of congenital ACHM, two of which involve cyclic nucleotide-gated ion channels (ACHM2/ACHM3), a third involves the cone photoreceptor transducin ("GNAT2", ACHM4), and the last remains unknown.
Aside from a complete inability to see color, individuals with complete achromatopsia have a number of other ophthalmologic aberrations. Included among these aberrations are greatly decreased visual acuity (<0.1 or 20/200) in daylight, Hemeralopia, nystagmus, and severe photophobia. The fundus of the eye appears completely normal. Also see Pingelap.
There have been cases of improvement in extra-ocular movement with botulinum toxin injection.
Causes of the one and a half syndrome include pontine hemorrhage, ischemia, tumors, infective mass lesions such as tuberculomas, and demyelinating conditions like multiple sclerosis.
Parinaud's Syndrome is a cluster of abnormalities of eye movement and pupil dysfunction, characterized by:
1. Paralysis of upgaze: Downward gaze is usually preserved. This vertical palsy is supranuclear, so doll's head maneuver should elevate the eyes, but eventually all upward gaze mechanisms fail.
2. Pseudo-Argyll Robertson pupils: Accommodative paresis ensues, and pupils become mid-dilated and show light-near dissociation.
3. Convergence-Retraction nystagmus: Attempts at upward gaze often produce this phenomenon. On fast up-gaze, the eyes pull in and the globes retract. The easiest way to bring out this reaction is to ask the patient to follow down-going stripes on an optokinetic drum.
4. Eyelid retraction (Collier's sign)
5. Conjugate down gaze in the primary position: "setting-sun sign". Neurosurgeons see this sign most commonly in patients with failed hydrocephalus shunts.
It is also commonly associated with bilateral papilledema. It has less commonly been associated with spasm of accommodation on attempted upward gaze, pseudoabducens palsy (also known as thalamic esotropia) or slower movements of the abducting eye than the adducting eye during horizontal saccades, see-saw nystagmus and associated ocular motility deficits including skew deviation, oculomotor nerve palsy, trochlear nerve palsy and internuclear ophthalmoplegia.
The primary vitreous used in formation of the eye during fetal development remains in the eye upon birth and is hazy and scarred. The symptoms are leukocoria, strabismus, nystagmus and blurred vision, blindness.
Oscillopsia is a visual disturbance in which objects in the visual field appear to oscillate. The severity of the effect may range from a mild blurring to rapid and periodic jumping. Oscillopsia is an incapacitating condition experienced by many patients with neurological disorders. It may be the result of ocular instability occurring after the oculomotor system is affected, no longer holding images steady on the retina. A change in the magnitude of the vestibulo-ocular reflex due to vestibular disease can also lead to oscillopsia during rapid head movements. Oscillopsia may also be caused by involuntary eye movements such as nystagmus, or impaired coordination in the visual cortex (especially due to toxins) and is one of the symptoms of superior canal dehiscence syndrome. Sufferers may experience dizziness and nausea. Oscillopsia can also be used as a quantitative test to document aminoglycoside toxicity. Permanent oscillopsia can arise from an impairment of the ocular system that serves to maintain ocular stability. Paroxysmal oscillopsia can be due to an abnormal hyperactivity in the peripheral ocular or vestibular system.
Persistent hyperplastic primary vitreous (PHPV), also known as Persistent Fetal Vasculature (PFV), is a rare congenital developmental anomaly of the eye that results
following failure of the embryological, primary vitreous and hyaloid vasculature to regress. It can be present in three forms: purely anterior (persistent tunica vasculosa lentis and persistent posterior fetal fibrovascular sheath of the lens), purely posterior (falciform retinal septum and ablatio falcicormis congenita) and a combination of both. Most examples of PHPV are unilateral and non-hereditary. When bilateral, PHPV may follow an autosomal recessive or autosomal dominant inheritance pattern.
Zonular cataract and nystagmus, also referred as Nystagmus with congenital zonular cataract is a rare congenital disease associated with Nystagmus and zonular cataract of the eye.