Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The experience of amaurosis fugax is classically described as a temporary loss of vision in one or both eyes that appears as a black "curtain coming down vertically into the field of vision in one eye;" however, this altitudinal visual loss is relatively uncommon. In one study, only 23.8 percent of patients with transient monocular vision loss experienced the classic "curtain" or "shade" descending over their vision. Other descriptions of this experience include a monocular blindness, dimming, fogging, or blurring. Total or sectorial vision loss typically lasts only a few seconds, but may last minutes or even hours. Duration depends on the cause of the vision loss. Obscured vision due to papilledema may last only seconds, while a severely atherosclerotic carotid artery may be associated with a duration of one to ten minutes. Certainly, additional symptoms may be present with the amaurosis fugax, and those findings will depend on the cause of the transient monocular vision loss.
Ocular causes include:
- Iritis
- Keratitis
- Blepharitis
- Optic disc drusen
- Posterior vitreous detachment
- Closed-angle glaucoma
- Transient elevation of intraocular pressure
- Intraocular hemorrhage
- Coloboma
- Myopia
- Orbital hemangioma
- Orbital osteoma
- Keratoconjunctivitis sicca
Those with ocular ischemic syndrome are typically between the ages of 50 and 80 (patients over 65) ; twice as many men as women are affected. More than 90% of those presenting with the condition have vision loss. Patients may report a dull, radiating ache over the eye and eyebrow. Those with ocular ischemic syndrome may also present with a history of other systemic diseases including arterial hypertension, diabetes mellitus, coronary artery disease, previous stroke, and hemodialysis.
The condition presents with visual loss secondary to hypoperfusion of the eye structures. The patient presents with intractable pain or ocular angina. On dilated examination, there may be blot retinal hemorrhages along with dilated and beaded retinal veins. The ocular perfusion pressure is decreased.
The corneal layers show edema and striae. There is mild anterior uveitis. A cherry-red spot may be seen in the macula, along with cotton-wool spots elsewhere, due to retinal nerve fiber layer hemorrhages. The retinal arteries may show spontaneous pulsations.
Those experiencing amaurosis are usually advised to consult a physician immediately as any form of vision loss, even if temporary, is a symptom that may indicate the presence of a serious ocular or systemic problem.
If carotid occlusive disease results in ophthalmic artery occlusion, general ocular ischemia may result in retinal neovascularization, rubeosis iridis, cells and flare, iris necrosis, and cataract. The condition leads to neovascularization in various eye tissues due to the ischemia. The eye pressure may become high due to associated neovascular glaucoma. An ischemic optic neuropathy may eventually occur.
Leber's congenital amaurosis is an inherited disease resulting in optic atrophy and secondary severe vision loss or blindness. It was first described by Theodore Leber in the 19th century.
Amaurosis fugax (Latin: "fugax" meaning "fleeting") is a temporary loss of vision in one eye caused by decreased blood flow (ischemia) to the retina. It may also be caused by embolization from atherosclerotic plaques in the ipsilateral (same side) internal carotid artery. It is a type of transient ischaemic attack (TIA). Those experiencing amaurosis usually experience complete symptom resolution within a few minutes. In a small minority of those who experience amaurosis, stroke or permanent vision loss results. Diabetes, hypertension and smoking are factors known to increase the risks of suffering this condition. It also can be the result of surgical repair to the mitral valve, when very small emboli may break away from the site of the repair, while the patient's tissue grows to cover the plastic annuloplasty band.
Quinidine toxicity can lead to cinchonism and also to quinine amaurosis.
Childhood blindness is an important cause contributing to the burden of blindness. Blindness in children can be defined as a visual acuity of <3/60 in the eye with better vision of a child under 16 years of age. This generally means that the child cannot see something three feet (about one meter) away, that another child could see if it was 60 feet (about 20 meters) away.
There are many causes of blindness in children. Blindness may be due to genetic mutations, birth defects, premature birth, nutritional deficiencies, infections, injuries, and other causes. Severe retinopathy of prematurity (ROP), cataracts and refractive error are also causes.
The most frequently affected parts of the eyes are:
- Whole globe (36%)
- Cornea (36%)
- Lens (11%)
- Retina (6%)
- Optic nerve (5%)
- Uvea (2%)
The term congenital refers to a condition present from birth (not acquired) and amaurosis refers to a loss of vision "not" associated with a lesion. However, beyond these general descriptions, the presentation of LCA can vary, because it is associated with multiple genes.
LCA is typically characterized by nystagmus, sluggish or absent pupillary responses, and severe vision loss or blindness.
The definition of visual impairment is reduced vision not corrected by glasses or contact lenses. The World Health Organization uses the following classifications of visual impairment. When the vision in the better eye with best possible glasses correction is:
- 20/30 to 20/60 : is considered mild vision loss, or near-normal vision
- 20/70 to 20/160 : is considered moderate visual impairment, or moderate low vision
- 20/200 to 20/400 : is considered severe visual impairment, or severe low vision
- 20/500 to 20/1,000 : is considered profound visual impairment, or profound low vision
- More than 20/1,000 : is considered near-total visual impairment, or near total blindness
- No light perception : is considered total visual impairment, or total blindness
Blindness is defined by the World Health Organization as vision in a person's best eye with best correction of less than 20/500 or a visual field of less than 10 degrees. This definition was set in 1972, and there is ongoing discussion as to whether it should be altered to officially include uncorrected refractive errors.
The cause for pathological nystagmus may be congenital, idiopathic, or secondary to a pre-existing neurological disorder. It also may be induced temporarily by disorientation (such as on roller coaster rides) or by certain drugs (alcohol and other central nervous system depressants, inhalant drugs, stimulants, psychedelic drugs, and dissociative drugs).
Since the "CHM" gene is located on the X chromosome, symptoms are seen almost exclusively in men. While there are a few exceptions, female carriers have a noticeable lack of pigmentation in the RPE but do not experience any symptoms. Female carriers have a 50% chance of having either an affected son or a carrier daughter, while a male with choroideremia will have all carrier daughters and unaffected sons.
Even though the disease progression can vary significantly, there are general trends. The first symptom many individuals with choroideremia notice is a significant loss of night vision, which begins in youth. Peripheral vision loss occurs gradually, starting as a ring of vision loss, and continuing on to "tunnel vision" in adulthood. Individuals with choroideremia tend to maintain good visual acuity into their 40s, but eventual lose all sight at some point in the 50-70 age range. A study of 115 individuals with choroideremia found that 84% of patients under the age of 60 had a visual acuity of 20/40 or better, while 33% of patients over 60 years old had a visual acuity of 20/200 or worse. The most severe visual acuity impairment (only being able to count fingers or worse) did not occur until the seventh decade of life. The same study found the rate of visual acuity loss to be about 1 eye chart row per 5 years.
Pathological nystagmus is characterized by "excessive drifts of stationary retinal images that degrades vision and may produce illusory motion of the seen world: oscillopsia (an exception is congenital nystagmus)".
When nystagmus occurs without fulfilling its normal function, it is pathologic (deviating from the healthy or normal condition). Pathological nystagmus is the result of damage to one or more components of the vestibular system, including the semicircular canals, otolith organs, and the vestibulocerebellum.
Pathological nystagmus generally causes a degree of vision impairment, although the severity of such impairment varies widely. Also, many blind people have nystagmus, which is one reason that some wear dark glasses.
Visual impairment, also known as vision impairment or vision loss, is a decreased ability to see to a degree that causes problems not fixable by usual means, such as glasses. Some also include those who have a decreased ability to see because they do not have access to glasses or contact lenses. Visual impairment is often defined as a best corrected visual acuity of worse than either 20/40 or 20/60. The term blindness is used for complete or nearly complete vision loss. Visual impairment may cause people difficulties with normal daily activities such as driving, reading, socializing, and walking.
The most common causes of visual impairment globally are uncorrected refractive errors (43%), cataracts (33%), and glaucoma (2%). Refractive errors include near sighted, far sighted, presbyopia, and astigmatism. Cataracts are the most common cause of blindness. Other disorders that may cause visual problems include age related macular degeneration, diabetic retinopathy, corneal clouding, childhood blindness, and a number of infections. Visual impairment can also be caused by problems in the brain due to stroke, premature birth, or trauma among others. These cases are known as cortical visual impairment. Screening for vision problems in children may improve future vision and educational achievement. Screening adults without symptoms is of uncertain benefit. Diagnosis is by an eye exam.
The World Health Organization (WHO) estimates that 80% of visual impairment is either preventable or curable with treatment. This includes cataracts, the infections river blindness and trachoma, glaucoma, diabetic retinopathy, uncorrected refractive errors, and some cases of childhood blindness. Many people with significant visual impairment benefit from vision rehabilitation, changes in their environment, and assistive devices.
As of 2015 there were 940 million people with some degree of vision loss. 246 million had low vision and 39 million were blind. The majority of people with poor vision are in the developing world and are over the age of 50 years. Rates of visual impairment have decreased since the 1990s. Visual impairments have considerable economic costs both directly due to the cost of treatment and indirectly due to decreased ability to work.
Leber's congenital amaurosis (LCA) is a rare inherited eye disease that appears at birth or in the first few months of life.
One form of LCA was successfully treated with gene therapy in 2008.
It affects about 1 in 40,000 newborns. LCA was first described by Theodor Leber in the 19th century. It should not be confused with Leber's hereditary optic neuropathy, which is a different disease also described by Theodor Leber.
Signs and symptoms of TIA are widely variable and can mimic other neurologic conditions, making the clinical context and physical exam crucial in ruling in or out the diagnosis. The most common presenting symptoms of TIA are focal neurologic deficits, which can include, but are not limited to :
- Amaurosis fugax (painless, temporary loss of vision)
- One-sided facial droop
- One-sided motor weakness
- Diplopia (double vision)
- Problems with balance and spatial orientation
A detailed neurologic exam, including a thorough cranial nerve exam, is important to identify these findings and to differentiate them from mimickers of TIA. Symptoms such as unilateral weakness, amaurosis fugax, and double vision have higher odds of representing TIA compared to memory loss, headache, and blurred vision. Below is a table of symptoms at presentation, and what percentage of the time they are seen in TIAs versus conditions that mimic TIA. In general, focal deficits make TIA more likely, but the absence of focal findings do not exclude the diagnosis and further evaluation may be warranted if clinical suspicion for TIA is high (see “Diagnosis” section below).
Symptoms of TIAs can last on the order of minutes to 1-2 hours, but occasionally may last for a longer period of time. TIAs used to be defined as ischemic events in the brain that last less than 24 hours, but given the variation in duration of symptoms, this definition holds less significance. A pooled study of 808 patients with TIAs from 10 hospitals showed that 60% lasted less than 1 hour, 71% lasted less than 2 hours, and 14% lasted greater than 6 hours . Importantly, patients with symptoms that last more than one hour are more likely to have permanent neurologic damage, making prompt diagnosis and treatment important to maximize recovery.
A diagnosis of choroideremia can be made based on family history, symptoms, and the characteristic appearance of the fundus. However, choroideremia shares several clinical features with retinitis pigmentosa, a similar but broader group of retinal degenerative diseases, making a specific diagnosis difficult without genetic testing. Because of this choroideremia is often initially misdiagnosed as retinitis pigmentosa. A variety of different genetic testing techniques can be used to make a differential diagnosis.
The symptoms experienced in cholesterol embolism depend largely on the organ involved. Non-specific symptoms often described are fever, muscle ache and weight loss. Embolism to the legs causes a mottled appearance and purple discoloration of the toes, small infarcts and areas of gangrene due to tissue death that usually appear black, and areas of the skin that assume a marbled pattern known as "livedo reticularis". The pain is usually severe and requires opiates. If the ulcerated plaque is below the renal arteries the manifestations appear in both lower extremities. Very rarely the ulcerated plaque is below the aortic bifurcation and those cases the changes occur only in one lower extremity.
Kidney involvement leads to the symptoms of renal failure, which are non-specific but usually cause nausea, reduced appetite (anorexia), raised blood pressure (hypertension), and occasionally the various symptoms of electrolyte disturbance such as an irregular heartbeat. Some patients report hematuria (bloody urine) but this may only be detectable on microscopic examination of the urine. Increased amounts of protein in the urine may cause edema (swelling) of the skin (a combination of symptoms known as nephrotic syndrome).
If emboli have spread to the digestive tract, reduced appetite, nausea and vomiting may occur, as well as nonspecific abdominal pain, gastrointestinal hemorrhage (vomiting blood, or admixture of blood in the stool), and occasionally acute pancreatitis (inflammation of the pancreas).
Both the central nervous system (brain and spinal cord) and the peripheral nervous system may be involved. Emboli to the brain may cause stroke-like episodes, headache and episodes of loss of vision in one eye (known as amaurosis fugax). Emboli to the eye can be seen by ophthalmoscopy and are known as plaques of Hollenhorst. Emboli to the spinal cord may cause paraparesis (decreased power in the legs) or cauda equina syndrome, a group of symptoms due to loss of function of the distal part of the spinal cord - loss of control over the bladder, rectum and skin sensation around the anus. If the blood supply to a single nerve is interrupted by an embolus, the result is loss of function in the muscles supplied by that nerve; this phenomenon is called a "mononeuropathy".
Kawasaki disease often begins with a high and persistent fever that is not very responsive to normal treatment with paracetamol (acetaminophen) or ibuprofen. It is the most prominent symptom in Kawasaki disease, is a characteristic sign of the acute phase of the disease, is normally high (above 39–40 °C), is remittent, and is followed by extreme irritability. Recently, it is reported to be present in patients with atypical or incomplete Kawasaki disease; nevertheless, it is not present in 100% of cases. The first day of fever is considered the first day of illness, and the duration of fever is on average one to two weeks; in the absence of treatment, it may extend for three to four weeks. Prolonged fever is associated with higher incidence of cardiac involvement. It responds partially to antipyretic drugs and does not cease with the introduction of antibiotics. However, when appropriate therapy is started – intravenous immunoglobulin and aspirin – the fever is gone after two days.
Bilateral conjunctival inflammation was reported to be the most common symptom after fever. It typically involves the bulbar conjunctivae, is not accompanied by suppuration, and is not painful. It usually begins shortly after the onset of fever during the acute stage of the disease. Anterior uveitis may be present on slit-lamp examination. Iritis can occur, too. Keratic precipitates are another eye manifestation (detectable by a slit lamp but are usually too small to be seen by the unaided eye).
Kawasaki disease presents with set of mouth symptoms, the most characteristic changes are the red tongue, swollen lips with vertical cracking and bleeding. The mucosa of the mouth and throat may be bright red, and the tongue may have a typical "strawberry tongue" appearance (marked redness with prominent gustative papillae). These mouth symptoms are caused by the typical necrotizing microvasculitis with fibrinoid necrosis.
Cervical lymphadenopathy is seen in 50% to 75% of people, whereas the other features are estimated to occur in 90% of patients, but sometimes it can be the dominant presenting symptom. According to the definition of the diagnostic criteria, at least one impaired lymph node ≥ 15 mm in diameter should be involved. Affected lymph nodes are painless or minimally painful, nonfluctuant, and nonsuppurative; erythema of the neighboring skin may occur. Children with fever and neck adenitis who do not respond to antibiotics should have Kawasaki disease considered as part of the differential diagnoses.
In the acute phase of the disease, changes in the peripheral extremities can include erythema of the palms and soles, which is often striking with sharp demarcation and often accompanied by painful, brawny edema of the dorsa of the hands or feet. This is why affected children frequently refuse to hold objects in their hands or to bear weight on their feet. Later, during the convalescent or the subacute phase, desquamation of the fingers and toes usually begins in the periungual region within two to three weeks after the onset of fever and may extend to include the palms and soles. Around 11% of children affected by the disease may continue skin-peeling for many years. One to two months after the onset of fever, deep transverse grooves across the nails may develop (Beau’s lines), and occasionally nails are shed.
The most common skin manifestation is a diffuse macular-papular erythematous rash, which is quite nonspecific. The rash varies over time and is characteristically located on the trunk; it may further spread to involve the face, extremities, and perineum. Many other forms of cutaneous lesions have been reported; they may include scarlatiniform, papular, urticariform, multiform-like erythema, and purpuric lesions; even micropustules were reported. It can be polymorphic, not itchy, and normally observed up to the fifth day of fever. However, it is never bullous or vesicular.
In the acute stage of Kawasaki disease, systemic inflammatory changes are evident in many organs. Joint pain (arthralgia) and swelling, frequently symmetrical, and arthritis can also occur. Myocarditis, diarrhea, pericarditis, valvulitis, aseptic meningitis, pneumonitis, lymphadenitis, and hepatitis may be present and are manifested by the presence of inflammatory cells in the affected tissues. If left untreated, some symptoms will eventually relent, but coronary artery aneurysms will not improve, resulting in a significant risk of death or disability due to myocardial infarction. If treated quickly, this risk can be mostly avoided and the course of illness cut short.
Other reported nonspecific symptoms include cough, rhinorrhea, sputum, vomiting, headache, and seizure.
The course of the disease can be divided into three clinical phases.
- The acute febrile phase, which usually lasts for one to two weeks, is characterized by fever, conjunctival injection, erythema of the oral mucosa, erythema and swelling of the hands and feet, rash, cervical adenopathy, aseptic meningitis, diarrhea, and hepatic dysfunction. Myocarditis is common during this time, and a pericardial effusion may be present. Coronary arteritis may be present, but aneurysms are generally not yet visible by echocardiography.
- The subacute phase begins when fever, rash, and lymphadenopathy resolve at about one to two weeks after the onset of fever, but irritability, anorexia, and conjunctival injection persist. Desquamation of the fingers and toes and thrombocytosis are seen during this stage, which generally lasts until about four weeks after the onset of fever. Coronary artery aneurysms usually develop during this time, and the risk for sudden death is highest.
- The convalescent stage begins when all clinical signs of illness have disappeared, and continues until the sedimentation rate returns to normal, usually at six to eight weeks after the onset of illness.
The presentation between adults and children differs, as adults' neck lymph nodes are more affected (93% of adults versus 15% of children), hepatitis (65% versus 10%), and arthralgia (61% versus 24–38%). Some people have atypical presentations and may not have the classical symptoms. This occurs in particular in young infants; those people are especially at higher risk for cardiac artery aneurysms.
Other Kawasaki disease complications have been described, such as aneurysm of other arteries: aortic aneurysm, with a higher number of reported cases involving the abdominal aorta, axillary artery aneurysm, brachiocephalic artery aneurysm, aneurysm of iliac and femoral arteries, and renal artery aneurysm. Other vascular complications can occur such as increased wall thickness and decreased distensibility of carotid arteries, aorta, and brachioradial artery. This change in the vascular tone secondary to endothelial dysfunction. In addition, children with Kawasaki disease, with or without coronary artery complications, may have a more adverse cardiovascular risk profile, such as high blood pressure, obesity, and abnormal serum lipid profile.
Gastrointestinal complications in Kawasaki disease are similar to those observed in Henoch–Schönlein purpura, such as: intestinal obstruction, colon swelling, intestinal ischemia, intestinal pseudo-obstruction, and acute abdomen.
Eye changes associated with the disease have been described since the 1980s, being found as uveitis, iridocyclitis, conjunctival hemorrhage, optic neuritis, amaurosis, and ocular artery obstruction. It can also be found as necrotizing vasculitis, progressing into peripheral gangrene.
The neurological complications per central nervous system lesions are increasingly reported. The neurological complications found are meningoencephalitis, subdural effusion, cerebral hypoperfusion, cerebral ischemia and infarct, cerebellar infarction, manifesting with seizures, chorea, hemiplegia, mental confusion, lethargy and coma, or even a cerebral infarction with no neurological manifestations. Other neurological complications from cranial nerve involvement are reported as ataxia, facial palsy, and sensorineural hearing loss. Behavioral changes are thought to be caused by localised cerebral hypoperfusion, can include attention deficits, learning deficits, emotional disorders (emotional lability, fear of night, and night terrors), and internalization problems (anxious, depressive or aggressive behavior).
Based on clinical appearance, color blindness may be described as total or partial. Total color blindness is much less common than partial color blindness. There are two major types of color blindness: those who have difficulty distinguishing between red and green, and who have difficulty distinguishing between blue and yellow.
Immunofluorescent imaging is a way to determine red–green color coding. Conventional color coding is difficult for individuals with red–green color blindness (protanopia or deuteranopia) to discriminate. Replacing red with magenta or green with turquoise improves visibility for such individuals.
The different kinds of inherited color blindness result from partial or complete loss of function of one or more of the different cone systems. When one cone system is compromised, dichromacy results. The most frequent forms of human color blindness result from problems with either the middle or long wavelength sensitive cone systems, and involve difficulties in discriminating reds, yellows, and greens from one another. They are collectively referred to as "red–green color blindness", though the term is an over-simplification and is somewhat misleading. Other forms of color blindness are much more rare. They include problems in discriminating blues from greens and yellows from reds/pinks, and the rarest forms of all, complete color blindness or "monochromacy", where one cannot distinguish any color from grey, as in a black-and-white movie or photograph.
Protanopes, deuteranopes, and tritanopes are dichromats; that is, they can match any color they see with some mixture of just two primary colors (whereas normally humans are trichromats and require three primary colors). These individuals normally know they have a color vision problem and it can affect their lives on a daily basis. Two percent of the male population exhibit severe difficulties distinguishing between red, orange, yellow, and green. A certain pair of colors, that seem very different to a normal viewer, appear to be the same color (or different shades of same color) for such a dichromat. The terms protanopia, deuteranopia, and tritanopia come from Greek and literally mean "inability to see ("anopia") with the first ("prot-"), second ("deuter-"), or third ("trit-") [cone]", respectively.
Anomalous trichromacy is the least serious type of color deficiency. People with protanomaly, deuteranomaly, or tritanomaly are trichromats, but the color matches they make differ from the normal. They are called anomalous trichromats. In order to match a given spectral yellow light, protanomalous observers need more red light in a red/green mixture than a normal observer, and deuteranomalous observers need more green. From a practical standpoint though, many protanomalous and deuteranomalous people have very little difficulty carrying out tasks that require normal color vision. Some may not even be aware that their color perception is in any way different from normal.
Protanomaly and deuteranomaly can be diagnosed using an instrument called an anomaloscope, which mixes spectral red and green lights in variable proportions, for comparison with a fixed spectral yellow. If this is done in front of a large audience of males, as the proportion of red is increased from a low value, first a small proportion of the audience will declare a match, while most will see the mixed light as greenish; these are the deuteranomalous observers. Next, as more red is added the majority will say that a match has been achieved. Finally, as yet more red is added, the remaining, protanomalous, observers will declare a match at a point where normal observers will see the mixed light as definitely reddish.
In almost all cases, color blind people retain blue–yellow discrimination, and most color-blind individuals are anomalous trichromats rather than complete dichromats. In practice, this means that they often retain a limited discrimination along the red–green axis of color space, although their ability to separate colors in this dimension is reduced. Color blindness very rarely refers to complete monochromatism.
Dichromats often confuse red and green items. For example, they may find it difficult to distinguish a Braeburn apple from a Granny Smith or red from green of traffic lights without other clues—for example, shape or position. Dichromats tend to learn to use texture and shape clues and so may be able to penetrate camouflage that has been designed to deceive individuals with normal color vision.
Colors of traffic lights are confusing to some dichromats as there is insufficient apparent difference between the red/amber traffic lights and sodium street lamps; also, the green can be confused with a grubby white lamp. This is a risk on high-speed undulating roads where angular cues cannot be used. British Rail color lamp signals use more easily identifiable colors: The red is blood red, the amber is yellow and the green is a bluish color. Most British road traffic lights are mounted vertically on a black rectangle with a white border (forming a "sighting board") and so dichromats can more easily look for the position of the light within the rectangle—top, middle or bottom. In the eastern provinces of Canada horizontally mounted traffic lights are generally differentiated by shape to facilitate identification for those with color blindness. In the United States, this is not done by shape but by position, as the red light is always on the left if the light is horizontal, or on top if the light is vertical. However, a single flashing light (red indicating cars must stop, yellow for caution/yield) is indistinguishable, but these are rare.
Cholesterol embolism (often cholesterol crystal embolism or atheroembolism, sometimes blue toe or purple toe syndrome or trash foot or warfarin blue toe syndrome) occurs when cholesterol is released, usually from an atherosclerotic plaque, and travels as an embolus in the bloodstream to lodge (as an embolism) causing an obstruction in blood vessels further away. Most commonly this causes skin symptoms (usually livedo reticularis), gangrene of the extremities and sometimes renal failure; problems with other organs may arise, depending on the site at which the cholesterol crystals enter the bloodstream. When the kidneys are involved, the disease is referred to as atheroembolic renal disease (AERD). The diagnosis usually involves biopsy (removing a tissue sample) from an affected organ. Cholesterol embolism is treated by removing the cause and giving supportive therapy; statin drugs have been found to improve the prognosis.
Carotid stenosis is a narrowing or constriction of the inner surface (lumen) of the carotid artery, usually caused by atherosclerosis.