Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Concomitant esotropia – that is, an inward squint that does not vary with the direction of gaze – mostly sets in before 12 months of age (this constitutes 40% of all strabismus cases) or at the age of three or four. Most patients with "early-onset" concomitant esotropia are emmetropic, whereas most of the "later-onset" patients are hyperopic. It is the most frequent type of natural strabismus not only in humans, but also in monkeys.
Concomitant esotropia can itself be subdivided into esotropias that are ether "constant," or "intermittent."
- Constant esotropia
- Intermittent esotropia
A patient can have a constant esotropia for reading, but an intermittent esotropia for distance (but rarely vice versa).
Accommodative esotropia (also called "refractive esotropia") is an inward turning of the eyes due to efforts of accommodation. It is often seen in patients with moderate amounts of hyperopia. The person with hyperopia, in an attempt to "accommodate" or focus the eyes, converges the eyes as well, as convergence is associated with activation of the accommodation reflex. The over-convergence associated with the extra accommodation required to overcome a hyperopic refractive error can precipitate a loss of binocular control and lead to the development of esotropia.
The chances of an esotropia developing in a hyperopic child will depend to some degree on the amount of hyperopia present. Where the degree of error is small, the child will typically be able to maintain control because the amount of over-accommodation required to produce clear vision is also small. Where the degree of hyperopia is large, the child may not be able to produce clear vision no matter how much extra-accommodation is exerted and thus no incentive exists for the over-accommodation and convergence that can give rise to the onset of esotropia. However, where the degree of error is small enough to allow the child to generate clear vision by over-accommodation, but large enough to disrupt their binocular control, esotropia will result.
Only about 20% of children with hyperopia greater than +3.5 diopters develop strabismus.
Where the esotropia is solely a consequence of uncorrected hyperopic refractive error, providing the child with the correct glasses and ensuring that these are worn all the time, is often enough to control the deviation. In such cases, known as 'fully accommodative esotropias,' the esotropia will only be seen when the child removes their glasses. Many adults with childhood esotropias of this type make use of contact lenses to control their 'squint.' Some undergo refractive surgery for this purpose.
A second type of accommodative esotropia also exists, known as 'convergence excess esotropia.' In this condition the child exerts excessive accommodative convergence relative to their accommodation. Thus, in such cases, even when all underlying hyperopic refractive errors have been corrected, the child will continue to squint when looking at very small objects or reading small print. Even though they are exerting a normal amount of accommodative or 'focusing' effort, the amount of convergence associated with this effort is excessive, thus giving rise to esotropia. In such cases an additional hyperopic correction is often prescribed in the form of bifocal lenses, to reduce the degree of accommodation, and hence convergence, being exerted. Many children will gradually learn to control their esotropias, sometimes with the help of orthoptic exercises. However, others will eventually require extra-ocular muscle surgery to resolve their problems.
Strabismus may also be classified based on time of onset, either congenital, acquired, or secondary to another pathological process. Many infants are born with their eyes slightly misaligned, and this is typically outgrown by six to 12 months of age. Acquired and secondary strabismus develop later. The onset of accommodative esotropia, an overconvergence of the eyes due to the effort of accommodation, is mostly in early childhood. Acquired non-accommodative strabismus and secondary strabismus are developed after normal binocular vision has developed. In adults with previously normal alignment, the onset of strabismus usually results in double vision.
Any disease that causes vision loss may also cause strabismus, but it can also result from any severe and/or traumatic injury to the affected eye. Sensory strabismus is strabismus due to vision loss or impairment, leading to horizontal, vertical or torsional misalignment or to a combination thereof, with the eye with poorer vision drifting slightly over time. Most often, the outcome is horizontal misalignment. Its direction depends on the patient age at which the damage occurs: patients whose vision is lost or impaired at birth are more likely to develop esotropia, whereas patients with acquired vision loss or impairment mostly develop exotropia. In the extreme, complete blindness in one eye generally leads to the blind eye reverting to an anatomical position of rest.
Although many possible causes of strabismus are known, among them severe and/or traumatic injuries to the afflicted eye, in many cases no specific cause can be identified. This last is typically the case when strabismus is present since early childhood.
Results of a U.S. cohort study indicate that the incidence of adult-onset strabismus increases with age, especially after the sixth decade of life, and peaks in the eighth decade of life, and that the lifetime risk of being diagnosed with adult-onset strabismus is approximately 4%.
Horizontal deviations are classified into two varieties. "Eso" describes inward or convergent deviations towards the midline. "Exo" describes outward or divergent misalignment. Vertical deviations are also classified into two varieties. "Hyper" is the term for an eye whose gaze is directed higher than the fellow eye while "hypo" refers to an eye whose gaze is directed lower. "Cyclo" refers to torsional strabismus, which occurs when the eyes rotate around the anterior-posterior axis to become misaligned and is quite rare.
The earliest sign of exotropia is usually a noticeable outward deviation of the eye. This sign may at first be intermittent, occurring when a child is daydreaming, not feeling well, or tired. It may also be more noticeable when the child looks at something in the distance. Squinting or frequent rubbing of the eyes is also common with exotropia. The child probably will not mention seeing double, i.e., double vision. However, he or she may close one eye to compensate for the problem.
Generally, exotropia progresses in frequency and duration. As the disorder progresses, the eyes will start to turn out when looking at close objects as well as those in the distance. If left untreated, the eye may turn out continually, causing a loss of binocular vision.
In young children with any form of strabismus, the brain may learn to ignore the misaligned eye's image and see only the image from the best-seeing eye. This is called amblyopia, or lazy eye, and results in a loss of binocular vision, impairing depth perception. In adults who develop strabismus, double vision sometimes occurs because the brain has already been trained to receive images from both eyes and cannot ignore the image from the turned eye.
Additionally in adults who have had exotropia since childhood, the brain may adapt to using a "blind-spot" whereby it receives images from both eyes, but no full image from the deviating eye, thus avoiding double vision and in fact increasing peripheral vision on the side of the deviating eye.
Exotropia is a form of strabismus where the eyes are deviated outward. It is the opposite of esotropia and usually involves more severe axis deviation than exophoria. People with exotropia often experience crossed diplopia. Intermittent exotropia is a fairly common condition. "Sensory exotropia" occurs in the presence of poor vision. Infantile exotropia (sometimes called "congenital exotropia") is seen during the first year of life, and is less common than "essential exotropia" which usually becomes apparent several years later.
The brain's ability to see three-dimensional objects depends on proper alignment of the eyes. When both eyes are properly aligned and aimed at the same target, the visual portion of the brain fuses the forms into a single image. When one eye turns inward, outward, upward, or downward, two different pictures are sent to the brain. This causes loss of depth perception and binocular vision. There have also been some reports of people that can "control" their afflicted eye. The term is from Greek "exo" meaning "outward" and "trope" meaning "a turning".
"Cross-fixation congenital esotropia", also called "Cianci's syndrome" is a particular type of large-angle infantile esotropia associated with tight medius rectus muscles. With the tight muscles, which hinder adduction, there is a constant inward eye turn. The patient cross-fixates, that is, to fixate objects on the left, the patient looks across the nose with the right eye, and vice versa. The patient tends to adopt a head turn, turning the head to the right to better see objects in the left visual field and turning the head to the left to see those in the right visual field. Binasal occlusion can be used to discourage cross-fixation. However, the management of cross-fixation congenital esotropia usually involves surgery.
Clinically Infantile esotropia must be distinguished from:
1. VIth Cranial nerve or abducens palsy
2. Nystagmus Blockage Syndrome
3. Esotropia arising secondary to central nervous system abnormalities (in cerebral palsy for example)
4. Primary Constant esotropia
5. Duane's Syndrome
Physiological nystagmus is a form of involuntary eye movement that is part of the vestibulo-ocular reflex (VOR), characterized by alternating smooth pursuit in one direction and saccadic movement in the other direction.
Pathological nystagmus is characterized by "excessive drifts of stationary retinal images that degrades vision and may produce illusory motion of the seen world: oscillopsia (an exception is congenital nystagmus)".
When nystagmus occurs without fulfilling its normal function, it is pathologic (deviating from the healthy or normal condition). Pathological nystagmus is the result of damage to one or more components of the vestibular system, including the semicircular canals, otolith organs, and the vestibulocerebellum.
Pathological nystagmus generally causes a degree of vision impairment, although the severity of such impairment varies widely. Also, many blind people have nystagmus, which is one reason that some wear dark glasses.
The eye drifts upward spontaneously or after being covered. The condition usually affects both eyes, but can occur unilaterally or asymmetrically. It is often associated with latent or manifest-latent nystagmus and, as well as occurring with infantile esotropia, can also be found associated with exotropias and vertical deviations.
DVDs are usually controlled from occurring with both eyes open, but may become manifest with inattention. Usually some level of dissociative occlusion is required - to trigger the brain to suppress vision in that eye and then not control a DVD from occurring. The level of dissociative occlusion required may involve using a red filter, a darker filter or complete occlusion (e.g. with a hand).
Diplopia can also occur when viewing with only one eye; this is called monocular diplopia, or, where the patient perceives more than two images, monocular polyopia. While there rarely may be serious causes behind monocular diplopia symptoms, this is much less often the case than with binocular diplopia. The differential diagnosis of multiple image perception includes the consideration of such conditions as corneal surface keratoconus, subluxation of the lens, a structural defect within the eye, a lesion in the anterior visual cortex or non-organic conditions, however diffraction-based (rather than geometrical) optical models have shown that common optical conditions, especially astigmatism, can also produce this symptom.
One of the first steps in diagnosing diplopia is often to see whether one of two major classifications may be eliminated: both may be present. That involves blocking one eye to see which symptoms are evident in each eye alone.
Nobel-prize winner David H. Hubel described suppression in simple terms as follows:
Suppression is frequent in children with anisometropia or strabismus or both. For instance, children with infantile esotropia may alternate with which eye they look, each time suppressing vision in the other eye.
Suppression of an eye is a subconscious adaptation by a person's brain to eliminate the symptoms of disorders of binocular vision such as strabismus, convergence insufficiency and aniseikonia. The brain can eliminate double vision by ignoring all or part of the image of one of the eyes. The area of a person's visual field that is suppressed is called the suppression scotoma (with a scotoma meaning, more generally, an area of partial alteration in the visual field). Suppression can lead to amblyopia.
DVD typically becomes apparent between 18 months and three years of age, however, the difficulties of achieving the prolonged occlusion required for accurate detection in the very young, make it possible that onset is generally earlier than these figures suggest.
Heterophoria is an eye condition in which the directions that the eyes are pointing at rest position, when "not" performing binocular fusion, are not the same as each other, or, "not straight". There can be esophoria, where the eyes tend to cross inward in the absence of fusion; exophoria, in which they diverge; or hyperphoria, in which one eye points up or down relative to the other. Phorias are known as 'latent squint' because the tendency of the eyes to deviate is kept latent by fusion. A person with two normal eyes has single vision (usually) because of the combined use of the sensory and motor systems. The motor system acts to point both eyes at the target of interest; any offset is detected visually (and the motor system corrects it). Heterophoria only occurs during dissociation of the left eye and right eye, when fusion of the eyes is absent. If you cover one eye (e.g. with your hand) you remove the sensory information about the eye's position in the orbit. Without this, there is no stimulus to binocular fusion, and the eye will move to a position of "rest". The difference between this position, and where it would be were the eye uncovered, is the heterophoria. The opposite of heterophoria, where the eyes are straight when relaxed and not fusing, is called orthophoria.
In contrast, fixation disparity is a very small deviation of the pointing directions of the eyes that is present while performing binocular fusion.
Heterophoria is usually asymptomatic. This is when it is said to be "compensated". When fusional reserve is used to compensate for heterophoria, it is known as compensating vergence. In severe cases, when the heterophoria is not overcome by fusional vergence, sign and symptoms appear. This is called decompensated heterophoria.
Heterophoria may lead to squint or also known as strabismus.
When the fusional vergence system can no longer hold back heterophoria, the phoria manifests. In this condition, the eyes deviate from the fixating position.
Anisometropia is the condition in which the two eyes have unequal refractive power. Each eye can be nearsighted (myopia), farsighted (hyperopia) or a combination of both, which is called antimetropia. Generally a difference in power of two diopters or more is the accepted threshold to label the condition anisometropia.
In certain types of anisometropia, the visual cortex of the brain will not use both eyes together (binocular vision), and will instead suppress the central vision of one of the eyes. If this occurs often enough during the first 10 years of life while the visual cortex is developing, it can result in amblyopia, a condition where even when correcting the refractive error properly, the person's vision in the affected eye is still not correctable to 20/20.
The name is from four Greek components: "an-" "not," "iso-" "same," "metr-" "measure," "ops" "eye."
An estimated 6% of subjects aged 6 to 18 have anisometropia.
Esophoria is an eye condition involving inward deviation of the eye, usually due to extra-ocular muscle imbalance. It is a type of heterophoria.
Causes include:
- Refractive errors
- Divergence insufficiency
- Convergence excess; this can be due to nerve, muscle, congenital or mechanical anomalies.
Unlike esotropia, fusion is possible and therefore diplopia is uncommon.
The optokinetic response is a combination of a slow-phase and fast-phase eye movements. It is seen when an individual follows a moving object with their eyes, which then moves out of the field of vision at which point their eye moves back to the position it was in when it first saw the object. The reflex develops at about 6 months of age.
Optokinetic nystagmus (OKN) is nystagmus that occurs in response to a rotation movement. It is present normally. The optokinetic response allows the eye to follow objects in motion when the head remains stationary (e.g., observing individual telephone poles on the side of the road as one travels by them in a car, or observing stationary objects while walking past them).
The nerve dysfunction induces esotropia, a convergent squint on distance fixation. On near fixation the affected individual may have only a latent deviation and be able to maintain binocularity or have an esotropia of a smaller size. Patients sometimes adopt a face turned towards the side of the affected eye, moving the eye away from the field of action of the affected lateral rectus muscle, with the aim of controlling diplopia and maintaining binocular vision.
Diplopia is typically experienced by adults with VI nerve palsies, but children with the condition may not experience diplopia due to suppression. The neuroplasticity present in childhood allows the child to 'switch off' the information coming from one eye, thus relieving any diplopic symptoms. Whilst this is a positive adaptation in the short term, in the long term it can lead to a lack of appropriate development of the visual cortex giving rise to permanent visual loss in the suppressed eye; a condition known as amblyopia.
In the clinical setting, the principal difficulties in differential diagnosis arise as a consequence of the very early age at which patients with this condition first present. The clinician must be persistent in examining abduction and adduction, and in looking for any associated palpebral fissure changes or head postures, when attempting to determine whether what often presents as a common childhood squint (note-"squint" is a British term for two eyes not looking in the same direction) is in fact Duane syndrome. Fissure changes, and the other associated characteristics of Duane's such as up or down shoots and globe retraction, are also vital when deciding whether any abduction limitation is the result of Duane's and not a consequence of VI or abducens cranial nerve palsy.
Acquired Duane's syndrome is a rare event occurring after peripheral nerve palsy.
The characteristic features of the syndrome are:
- Limitation of abduction (outward movement) of the affected eye.
- Less marked limitation of adduction (inward movement) of the same eye.
- Retraction of the eyeball into the socket on adduction, with associated narrowing of the palpebral fissure (eye closing).
- Widening of the palpebral fissure on attempted abduction. (N. B. Mein and Trimble point out that this is "probably of no significance" as the phenomenon also occurs in other conditions in which abduction is limited.)
- Poor convergence.
- A head turn to the side of the affected eye to compensate for the movement limitations of the eye(s) and to maintain binocular vision.
While usually isolated to the eye abnormalities, Duane syndrome can be associated with other problems including cervical spine abnormalities Klippel-Feil syndrome, Goldenhar syndrome, heterochromia, and congenital deafness.
If an optokinetic drum is available, rotate the drum in front of the patient. Ask the patient to look at the drum as you rotate it slowly. If an optokinetic drum is not available, move a strip of paper with alternating 2-inch black and white strips across the patient's visual field. Pass it in front of the patient's eye at reading distance while instructing the patient to look at it as it rapidly moves by. With normal vision, a nystagmus develops in both adults and infants. The nystagmus consists of initial slow phases in the direction of the stimulus (smooth pursuits), followed by fast, corrective phases (saccade). Presence of nystagmus indicates an intact visual pathway.
Another effective method is to hold a mirror in front of the patient and slowly rotate the mirror to either side of the patient. The patient with an intact visual pathway will maintain eye contact with herself or himself. This compelling optokinetic stimulus forces reflex slow eye movements.
OKN can be used as a crude assessment of the visual system, particularly in infants. When factitious blindness or malingering is suspected, check for optokinetic nystagmus to determine whether there is an intact visual pathway.