Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Infantile Refsum disease is one of three peroxisome biogenesis disorders which belong to the Zellweger spectrum of peroxisome biogenesis disorders (PBD-ZSD). The other two disorders are Zellweger syndrome (ZS) and neonatal adrenoleukodystrophy (NALD). Although they share a similar molecular basis for disease, Infantile Refsum disease is less severe than Zellweger syndrome.
Infantile Refsum disease is a developmental brain disorder. In addition, patients can show a reduction in central nervous system (CNS) myelin (particularly cerebral), which is referred to as (hypomyelination). Myelin is critical for normal CNS functions. Patients can also show postdevelopmental sensorineuronal degeneration that leads to a progressive loss of hearing and vision.
Infantile Refsum disease can also affect the function of many other organ systems. Patients can show craniofacial abnormalities, hepatomegaly (enlarged liver), and progressive adrenal dysfunction. Newborns may present with profound hypotonia (low muscle tone), and a poor ability to feed. In some patients, a progressive leukodystrophy has been observed that has a variable age of onset.
Symptoms range widely in their onset and severity. The onset of the most severe form, type III, begins within the first months of life and includes a quick progression of intellectual disability, liver and spleen enlargement (splenomegaly), hearing loss, respiratory infections and skeletal abnormalities. Often the appearance of an affected individual includes the following facial features: protruding forehead, leveled nasal bridge, small nose and wide mouth. Muscular weakness or spinal abnormalities can occur due to the buildup of storage materials in the muscle. A milder form of alpha-mannosidosis involves mild to moderate intellectual disability which develops during childhood or adolescence.
This exclusively myopathic form is the most prevalent and least severe phenotypic presentation of this disorder. Characteristic signs and symptoms include rhabdomyolysis (breakdown of muscle fibers and subsequent release of myoglobin), myoglobinuria, recurrent muscle pain, and weakness. It is important to note that muscle weakness and pain typically resolves within hours to days, and patients appear clinically normal in the intervening periods between attacks. Symptoms are most often exercise-induced, but fasting, a high-fat diet, exposure to cold temperature, or infection (especially febrile illness) can also provoke this metabolic myopathy. In a minority of cases, disease severity can be exacerbated by three life-threatening complications resulting from persistent rhabdomyolysis: acute kidney failure, respiratory insufficiency, and episodic abnormal heart rhythms. Severe forms may have continual pain from general life activity. The adult form has a variable age of onset. The first appearance of symptoms usually occurs between 6 and 20 years of age but has been documented in patients as young as 8 months as well as in adults over the age of 50. Roughly 80% cases reported to date have been male.
The initial affected individual described in 1986 had a complex phenotype, and was later found to have both beta-mannosidosis and Sanfilippo syndrome. People have been described with a wide spectrum of clinical presentations from infants and children with intellectual disability to adults who present with isolated skin findings (angiokeratomas). Most cases are identified in the first year of life with respiratory infections, hearing loss and intellectual disability. Because of its rarity, and non-specific clinical findings, beta-mannosidosis can go undiagnosed until adulthood, where it can present with intellectual disability and behavioral problems, including aggression.
Individuals with Refsum disease present with neurologic damage, cerebellar degeneration, and peripheral neuropathy. Onset is most commonly in childhood/adolescence with a progressive course, although periods of stagnation or remission occur. Symptoms also include ataxia, scaly skin (ichthyosis), difficulty hearing, and eye problems including retinitis pigmentosa, cataracts, and night blindness. In 80% of patients diagnosed with Refsum disease, sensorineural hearing loss has been reported. This is hearing loss as the result of damage to the inner ear or the nerve connected to ear to the brain.
Zellweger syndrome is one of three peroxisome biogenesis disorders which belong to the Zellweger spectrum of peroxisome biogenesis disorders (PBD-ZSD). The other two disorders are neonatal adrenoleukodystrophy (NALD), and infantile Refsum disease (IRD). Although all have a similar molecular basis for disease, Zellweger syndrome is the most severe of these three disorders.
Zellweger syndrome is associated with impaired neuronal migration, neuronal positioning, and brain development. In addition, individuals with Zellweger syndrome can show a reduction in central nervous system (CNS) myelin (particularly cerebral), which is referred to as hypomyelination. Myelin is critical for normal CNS functions, and in this regard, serves to insulate nerve fibers in the brain. Patients can also show postdevelopmental sensorineuronal degeneration that leads to a progressive loss of hearing and vision.
Zellweger syndrome can also affect the function of many other organ systems. Patients can show craniofacial abnormalities (such as a high forehead, hypoplastic supraorbital ridges, epicanthal folds, midface hypoplasia, and a large fontanel), hepatomegaly (enlarged liver), chondrodysplasia punctata (punctate calcification of the cartilage in specific regions of the body), eye abnormalities, and renal cysts. Newborns may present with profound hypotonia (low muscle tone), seizures, apnea, and an inability to eat.
There are three main types of carnitine palmitoyltransferase II deficiency classified on the basis of tissue-specific symptomotology and age of onset:
- Mild to severe adult myopathic form
- Severe infantile multisystemic form
- Lethal neonatal form
It should be noted that among the few people diagnosed with CPT2, some have unknown and/or novel mutations that place them outside these three categories while remaining positive for CPT2.
Infantile Refsum disease (IRD), also called infantile phytanic acid storage disease, is a rare autosomal recessive congenital peroxisomal biogenesis disorder within the Zellweger spectrum. These are disorders of the peroxisomes that are clinically similar to Zellweger syndrome and associated with mutations in the "PEX" family of genes. IRD is associated with deficient phytanic acid catabolism, as is Adult Refsum disease, but they are different disorders that should not be confused.
Phosphofructokinase deficiency also presents in a rare infantile form. Infants with this deficiency often display floppy infant syndrome (hypotonia), arthrogryposis, encephalopathy and cardiomyopathy. The disorder can also manifest itself in the central nervous system, usually in the form of seizures. PFK deficient infants also often have some type of respiratory issue. Survival rate for the infantile form of PFK deficiency is low, and the cause of death is often due to respiratory failure.
Beta-mannosidosis, also called lysosomal beta-mannosidase deficiency, is a disorder of oligosaccharide metabolism caused by decreased activity of the enzyme beta-mannosidase. This enzyme is coded for by the gene "MANBA", located at 4q22-25. Beta-mannosidosis is inherited in an autosomal recessive manner. Affected individuals appear normal at birth, and can have a variable clinical presentation. Infantile onset forms show severe neurodegeneration, while some children have intellectual disability. Hearing loss and angiokeratomas are common features of the disease.
A defective alpha-mannosidase enzyme, which normally helps to break down complex sugars derived from glycoproteins in the lysosome, causes sugar build up and impairs cell function. Complete absence of functionality in this enzyme leads to death during early childhood due to deterioration of the central nervous system. Enzymes with low residual activity lead to a milder type of the disease, with symptoms like reduced hearing, mental disabilities, susceptibility to bacterial infections, and skeletal deformities. The course of the disease is progressive.
Alpha-mannosidosis is classified into types I through III based on severity and age of onset. In contrast to the usual classifications scheme of these disorders, type III is the most severe.
Late-onset PFK deficiency, as the name suggests, is a form of the disease that presents later in life. Common symptoms associated with late-onset phosphofructokinase deficiency are myopathy, weakness and fatigue. Many of the more severe symptoms found in the classic type of this disease are absent in the late-onset form.
Symptoms present by eight months of age and are marked by developmental delay followed by neurological complications such as seizures, involuntary eye movements, and ataxia, involuntary muscle movements and failure to gain weight and grow at the expected rate (failure to thrive). Babies with this condition also have and enlarged liver and spleen (hepatosplenomegaly) and enlarged heart (cardiomegaly).
Refsum disease, also known as classic or adult Refsum disease, heredopathia atactica polyneuritiformis, phytanic acid oxidase deficiency and phytanic acid storage disease, is an autosomal recessive neurological disease that results from the over-accumulation of phytanic acid in cells and tissues. It is one of several disorders named after Norwegian neurologist Sigvald Bernhard Refsum (1907–1991). Refsum disease typically is adolescent onset and is diagnosed by above average levels of phytanic acid. Humans obtain the necessary phytanic acid primarily through diet. It is still unclear what function phytanic acid plays physiologically in humans, but has been found to regulate fatty acid metabolism in the liver of mice.
Like many other genetic disorders that affect lipid metabolism, there are several forms of MLD, which are late infantile, juvenile, and adult.
- In the "late infantile form", which is the most common form of MLD (50–60%), affected children begin having difficulty walking after the first year of life, usually at 15–24 months. Symptoms include muscle wasting and weakness, muscle rigidity, developmental delays, progressive loss of vision leading to blindness, convulsions, impaired swallowing, paralysis, and dementia. Children may become comatose. Untreated, most children with this form of MLD die by age 5, often much sooner.
- Children with the "juvenile form" of MLD (onset between 3 and 10 years of age) usually begin with impaired school performance, mental deterioration, and dementia and then develop symptoms similar to the late infantile form but with slower progression. Age of death is variable, but normally within 10 to 15 years of symptom onset although some juveniles can live for several decades or longer after onset.
- The "adult form" commonly begins after age 16 often with an onset in the 4th or 5th decade of life and presents as a psychiatric disorder or progressive dementia. Adult-onset MLD usually progresses more slowly than the late infantile and juvenile forms, with a protracted course of a decade or more.
Palliative care can help with many of the symptoms and usually improves quality of life and longevity.
Carriers have low enzyme levels compared to their family population ("normal" levels vary from family to family) but even low enzyme levels are adequate to process the body's sulfatide.
The symptoms of LSD vary, depending on the particular disorder and other variables such as the age of onset, and can be mild to severe. They can include developmental delay, movement disorders, seizures, dementia, deafness, and/or blindness. Some people with LSDhave enlarged livers (hepatomegaly) and enlarged spleens (splenomegaly), pulmonary and cardiac problems, and bones that grow abnormally.
All forms of MDDS are very rare. MDDS causes a wide range of symptoms, which can appear in newborns, infants, children, or adults, depending on the class of MDDS; within each class symptoms are also diverse.
In MDDS associated with mutations in "TK2", infants generally develop normally, but by around two years of age, symptoms of general muscle weakness (called "hypotonia"), tiredness, lack of stamina, and difficulty feeding begin to appear. Some toddlers start to lose control of the muscles in their face, mouth, and throat, and may have difficulty swallowing. Motor skills that had been learned may be lost, but generally the functioning of the brain and ability to think are not affected.
In MDDS associated with mutations in "SUCLA2" or "SUCLG1" that primarily affect the brain and muscle, hypotonia generally arises in infants before they are 6 months old, their muscles begin wasting away, and there is delay in psychomotor learning (learning basic skills like walking, talking, and intentional, coordinated movement). The spine often begins to curve (scoliosis or kyphosis), and the child often has abnormal movements (dystonia, athetosis or chorea), difficulty feeding, acid reflux, hearing loss, stunted growth, and difficulty breathing that can lead to frequent lung infections. Sometime epilepsy develops.
In MDDS associated with mutations in "RRM2B" that primarily affect the brain and muscle, there is again hypotonia in the first months, symptoms of lactic acidosis like nausea, vomiting, and rapid deep breathing, failure to thrive including the head remaining small, delay or regression in moving, and hearing loss. Many body systems are affected.
In MDDS associated with mutations in "DGUOK" that primarily affect the brain and the liver, there are two forms. There is an early-onset form in which symptoms arise from problems in many organs in the first week of life, especially symptoms of lactic acidosis as well as low blood sugar. Within weeks of birth they can develop liver failure and the associated jaundice and abdominal swelling, and many neurological problems including developmental delays and regression, and uncontrolled eye movement. Rarely within class of already rare diseases, symptoms only relating to liver disease emerge later in infancy or in childhood.
In MDDS associated with mutations in "MPV17" that primarily affect the brain and the liver, the symptoms are similar to those caused by DGUOK and also emerge shortly after birth, generally with fewer and less severe neurological problems. There is a subset of people of Navajo descent who develop Navajo neurohepatopathy, who in addition to these symptoms also have easily broken bones that do not cause pain, deformed hands or feet, and problems with their corneas.
In MDDS associated with mutations in "POLG" that primarily affect the brain and the liver, the symptoms are very diverse and can emerge anytime from shortly after birth to old age. The first signs of the disease, which include intractable seizures and failure to meet meaningful developmental milestones, usually occur in infancy, after the first year of life, but sometimes as late as the fifth year. Primary symptoms of the disease are developmental delay, progressive intellectual disability, hypotonia (low muscle tone), spasticity (stiffness of the limbs) possibly leading to quadriplegia, and progressive dementia. Seizures may include epilepsia partialis continua, a type of seizure that consists of repeated myoclonic (muscle) jerks. Optic atrophy may also occur, often leading to blindness. Hearing loss may also occur. Additionally, although physical signs of chronic liver dysfunction may not be present, many people suffer liver impairment leading to liver failure.
In MDDS associated with mutations in "PEO1"/"C10orf2" that primarily affect the brain and the liver, symptoms emerge shortly after birth or in early infancy, with hypotonia, symptoms of lactic acidosis, enlarged liver, feeding problems, lack of growth, and delay of psychomotor skills. Neurologically, development is slowed or stopped, and epilepsy emerges, as do sensory problems like loss of eye control and deafness, and neuromuscular problems like a lack of reflexes, muscular atrophy, and twitching, and epilepsy.
In MDDS associated with mutations in the genes associated with mutations in "ECGF1"/"TYMP" that primarily affects the brain and the gastrointestinal tract, symptoms can emerge any time in the first fifty years of life; most often they emerge before the person turns 20. Weight loss is common as is a lack of the ability of the stomach and intestines to automatically expand and contract and thus move through it (called gastrointestinal motility) – this leads to feeling full after eating only small amounts of food, nausea, acid reflux, All affected individuals develop weight loss and progressive gastrointestinal dysmotility manifesting as early satiety, nausea, diarrhea, vomiting, and stomach pain and swelling. People also develop neuropathy, with weakness and tingling. There are often eye problems, and intellectual disability.
The infantile form usually comes to medical attention within the first few months of life. The usual presenting features are cardiomegaly (92%), hypotonia (88%), cardiomyopathy (88%), respiratory distress (78%), muscle weakness (63%), feeding difficulties (57%) and failure to thrive (50%).
The main clinical findings include floppy baby appearance, delayed motor milestones and feeding difficulties. Moderate hepatomegaly may be present. Facial features include macroglossia, wide open mouth, wide open eyes, nasal flaring (due to respiratory distress), and poor facial muscle tone. Cardiopulmonary involvement is manifested by increased respiratory rate, use of accessory muscles for respiration, recurrent chest infections, decreased air entry in the left lower zone (due to cardiomegaly), arrhythmias and evidence of heart failure.
Median age at death in untreated cases is 8.7 months and is usually due to cardiorespiratory failure.
There are three main types of the disease each with its own distinctive symptoms.
Type I infantile form, infants will develop normally until about a year old. At this time, the affected infant will begin to lose previously acquired skills involving the coordination of physical and mental behaviors. Additional neurological and neuromuscular symptoms such as diminished muscle tone, weakness, involuntary rapid eye movements, vision loss, and seizures may become present. With time, the symptoms worsen and children affected with this disorder will experience a decreased ability to move certain muscles due to muscle rigidity. The ability to respond to external stimuli will also decrease. Other symptoms include neuroaxonal dystrophy from birth, discoloration of skin, Telangiectasia or widening of blood vessels.
Type II adult form, symptoms are milder and may not appear until the individual is in his or her 30s. Angiokeratomas, an increased coarsening of facial features, and mild intellectual impairment are likely symptoms.
Type III is considered an intermediate disorder. Symptoms vary and can include to be more severe with seizures and mental retardation, or less severe with delayed speech, a mild autistic like presentation, and/or behavioral problems.
Infantile free sialic acid storage disease (ISSD) is a lysosomal storage disease Occurs when a sialic acid, is unable to be transported out of the lysosomal membrane and instead, accumulates in the tissue and free sialic acid is excreted in the urine. Mutations in the SLC17A5 (solute carrier family 17 (anion/sugar transporter), member 50) gene cause all forms of sialic acid storage disease. The SLC17A5 gene is located on the long (q) arm of chromosome 6 between positions 14 and 15. This gene provides instructions for producing a protein called sialin that is located mainly on the membranes of lysosomes, compartments in the cell that digest and recycle materials.
ISSD is the most severe form of the sialic acid storage diseases. Babies with this condition have severe developmental delay, weak muscle tone (hypotonia), and failure to gain weight and grow at the expected rate (failure to thrive). They may have unusual facial features that are often described as "coarse," seizures, bone malformations, enlarged liver and spleen (hepatosplenomegaly), and an enlarged heart (cardiomegaly).
ISSD is a rare autosomal recessive disorder and affects 1 in 528,000 live births worldwide.
Symptoms of congenital Type III Galactosemia are apparent from birth, but vary in severity depending on whether the peripheral or generalized disease form is present. Symptoms may include:
- Infantile jaundice
- Infantile hypotonia
- Dysmorphic features
- Sensorineural hearing loss
- Impaired growth
- Cognitive deficiencies
- Depletion of cerebellar Purkinje cells
- Ovarian failure (POI) and hypertrophic hypergonadism
- Liver failure
- Renal failure
- Splenomegaly
- Cataracts
Studies of Type III galactosemia symptoms are mostly descriptive, and precise pathogenic mechanisms remain unknown. This is largely due to a lack of functional animal models of classic galactosemia. The recent development of a "Drosophila melanogaster" GALE mutant exhibiting galactosemic symptoms may yield a promising future animal model.
This form differs from the infantile principally in the relative lack of cardiac involvement. The onset is more insidious and has a slower progression. Cardiac involvement may occur but is milder than in the infantile form. Skeletal involvement is more prominent with a predilection for the lower limbs.
Late onset features include impaired cough, recurrent chest infections, hypotonia, progressive muscle weakness, delayed motor milestones, difficulty swallowing or chewing and reduced vital capacity.
Prognosis depends on the age of onset on symptoms with a better prognosis being associated with later onset disease.
Sandhoff disease symptoms are clinically indeterminable from Tay–Sachs disease. The classic infantile form of the disease has the most severe symptoms and is incredibly hard to diagnose at this early age. The first signs of symptoms begin before 6 months of age and the parents’ notice when the child begins regressing in their development. If the children had the ability to sit up by themselves or crawl they will lose this ability. This is caused by a slow deterioration of the muscles in the child’s body from the buildup of GM2 gangliosides. Since the body is unable to create the enzymes it needs within the central nervous system it is unable to attach to these gangliosides to break them apart and make them non-toxic. With this buildup there are several symptoms that begin to appear such as muscle/motor weakness, sharp reaction to loud noises, blindness, deafness, inability to react to stimulants, respiratory problems and infections, mental retardation, seizures, cherry red spots in the retina, enlarged liver and spleen (hepatosplenomegaly), pneumonia, or bronchopneumonia.
The other two forms of Sandhoff disease have similar symptoms but to a lesser extent. Adult and juvenile forms of Sandhoff disease are more rare than the infantile form. In these cases victims suffer cognitive impairment (retardation) and a loss of muscle coordination that impairs and eventually destroys their ability to walk; the characteristic red spots in the retina also develop. The adult form of the disease, however, is sometimes milder, and may only lead to muscle weakness that impairs walking or the ability to get out of bed.
Tay–Sachs disease is typically first noticed in infants around 6 months old displaying an abnormally strong response to sudden noises or other stimulus, known as the "startle response," because they are startled. There may also be listlessness or muscle stiffness (hypertonia). The disease is classified into several forms, which are differentiated based on the onset age of neurological symptoms.
- Infantile Tay–Sachs disease. Infants with Tay–Sachs disease appear to develop normally for the first six months after birth. Then, as neurons become distended with gangliosides, a relentless deterioration of mental and physical abilities begins. The child may become blind, deaf, unable to swallow, atrophied, and paralytic. Death usually occurs before the age of four.
- Juvenile Tay–Sachs disease. Juvenile Tay–Sachs disease is rarer than other forms of Tay–Sachs, and usually is initially seen in children between two and ten years old. People with Tay–Sachs disease develop cognitive and motor skill deterioration, dysarthria, dysphagia, ataxia, and spasticity. Death usually occurs between the age of five to fifteen years.
- Adult/Late-Onset Tay–Sachs disease. A rare form of this disease, known as Adult-Onset or Late-Onset Tay–Sachs disease, usually has its first symptoms during the 30s or 40s. In contrast to the other forms, late-onset Tay–Sachs disease is usually not fatal as the effects can stop progressing. It is frequently misdiagnosed. It is characterized by unsteadiness of gait and progressive neurological deterioration. Symptoms of late-onset Tay–Sachs – which typically begin to be seen in adolescence or early adulthood – include speech and swallowing difficulties, unsteadiness of gait, spasticity, cognitive decline, and psychiatric illness, particularly a schizophrenia-like psychosis. People with late-onset Tay–Sachs may become full-time wheelchair users in adulthood.
Until the 1970s and 1980s, when the disease's molecular genetics became known, the juvenile and adult forms of the disease were not always recognized as variants of Tay–Sachs disease. Post-infantile Tay–Sachs was often misdiagnosed as another neurological disorder, such as Friedreich's ataxia.
Signs and symptoms of GM2-gangliosidosis, AB variant are identical with those of infantile Tay-Sachs disease, except that enzyme assay testing shows normal levels of hexosaminidase A. Infantile Sandhoff disease has similar symptoms and prognosis, except that there is deficiency of both hexosaminidase A and hexosaminidase B. Infants with this disorder typically appear normal until the age of 3 to 6 months, when development slows and muscles used for movement weaken. Affected infants lose motor skills such as turning over, sitting, and crawling. As the disease progresses, infants develop seizures, vision and hearing loss, mental retardation, and paralysis.
An ophthalmological abnormality called a cherry-red spot, which can be identified with an eye examination, is characteristic of this disorder. This cherry-red spot is the same finding that Warren Tay first reported in 1881, when he identified a case of Tay-Sachs disease, and it has the same etiology.
The prognosis for AB variant is the same as for infantile Tay-Sachs disease. Children with AB variant die in infancy or early childhood.