Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The disease occurs much more in males than females (due to the X-linked recessive pattern of inheritance) and is estimated to occur in between 1 and 10 males per million. The first signs of WAS are usually petechiae and bruising, resulting from a low platelet count. Spontaneous nose bleeds and bloody diarrhea are common. Eczema develops within the first month of life. Recurrent bacterial infections develop by three months. Enlargement of the spleen is not an uncommon finding. The majority of WAS children develop at least one autoimmune disorder, and cancers (mainly lymphoma and leukemia) develop in up to a third of patients. Immunoglobulin M (IgM) levels are reduced, IgA and IgE are elevated, and IgG levels can be normal, reduced, or elevated. In addition to low blood platelet counts (i.e. thrombocytopenia), ~30% of afflicted individuals exhibit eosinophilia, i.e. high blood eosinophil counts.
Wiskott–Aldrich syndrome (WAS) is a rare X-linked recessive disease characterized by eczema, thrombocytopenia (low platelet count), immune deficiency, and bloody diarrhea (secondary to the thrombocytopenia). It is also sometimes called the eczema-thrombocytopenia-immunodeficiency syndrome in keeping with Aldrich's original description in 1954. The WAS-related disorders of X-linked thrombocytopenia (XLT) and X-linked congenital neutropenia (XLN) may present similar but less severe symptoms and are caused by mutations of the same gene.
The signs and symptoms of DOCK8 deficiency are similar to the autosomal dominant form, STAT3 deficiency. However, in DOCK8 deficiency, there is no skeletal or connective tissue involvement, and affected individuals do not have the characteristic facial features of those with autosomal dominant hyper-IgE syndrome. DOCK8 deficient children often have eczema, respiratory and skin staphylococcus infections.
Beyond these, many other recurrent infections have been observed, including recurrent fungal infections and recurrent viral infections (including molluscum contagiosum, herpes simplex, and herpes zoster), recurrent upper respiratory infection (including "Streptococcus pneumoniae", "Haemophilus influenzae", respiratory syncytial virus, and adenovirus), recurrent sinusitis, recurrent otitis media, mastoiditis, pneumonia, bronchitis with bronchiectasis, osteomyelitis, candidiasis, meningitis (caused by cryptococcus or H. influenzae), pericarditis, salmonella enteritis, and giardiasis. Other dermatologic problems include squamous-cell carcinoma/dysplasia (vulvar, anal, and facial). Immune problems are also common, including autoimmune hemolytic anemia, severe allergies (both food and environmental), asthma, and reactive airway disease. The nervous system may also be affected; observed conditions in DOCK8 deficient people include hemiplegia, ischemic stroke, subarachnoid hemorrhage, and facial paralysis. Vascular complications are common, including aortic aneurysm, cerebral aneurysm, vessel occlusion and underperfusion, and leukocytoclastic vasculitis.
DOCK8 deficiency, also called DOCK8 immunodeficiency syndrome, is the autosomal recessive form of hyperimmunoglobulin E syndrome, a genetic disorder characterized by elevated immunoglobulin E levels, eosinophilia, and recurrent infections with staphylococcus and viruses. It is caused by a mutation in the "DOCK8" gene.
X-linked thrombocytopenia is typically diagnosed in infancy. The disease presents as a bleeding disorder with easy bruising, mucosal bleeding, such as nosebleeds, and mild to severe anemia. Anemia is a condition in which there is an insufficient number of red blood cells to carry adequate levels of oxygen to the body’s tissues. X-linked thrombocytopenia is considered to be the milder phenotype of the "WAS"-related disorders. As age increases, the severity of symptoms tends to decrease. However, individuals with X-linked thrombocytopenia have an increased risk for life-threatening brain hemorrhages and spontaneous bleeding.
X-linked thrombocytopenia, also referred to as XLT or thrombocytopenia 1, is an inherited clotting disorder that primarily affects males. It is a "WAS"-related disorder, meaning it is caused by a mutation in the Wiskott-Aldrich Syndrome ("WAS") gene, which is located on the short arm of the X chromosome. "WAS"-related disorders include Wiskott-Aldrich syndrome, XLT, and X-linked congenital neutropenia (XLN). Of the "WAS"-related disorders, X-linked thrombocytopenia is considered to be the milder phenotype. Between 1 and 10 per million males worldwide are affected with this disorder. Females may be affected with this disorder but this is very rare since females have two X chromosomes and are therefore typically carriers of the mutation.
A number of syndromes escape formal classification but are otherwise recognisable by particular clinical or immunological features.
1. Wiskott–Aldrich syndrome
2. DNA repair defects not causing isolated SCID: ataxia-telangiectasia, ataxia-like syndrome, Nijmegen breakage syndrome, Bloom syndrome
3. DiGeorge syndrome (when associated with thymic defects)
4. Various immuno-osseous dysplasias (abnormal development of the skeleton with immune problems): cartilage–hair hypoplasia, Schimke syndrome
5. Hermansky–Pudlak syndrome type 2
6. Hyper-IgE syndrome
7. Chronic mucocutaneous candidiasis
8. Hepatic venoocclusive disease with immunodeficiency (VODI)
9. XL-dyskeratosis congenita (Hoyeraal-Hreidarsson syndrome)
Netherton syndrome is characterized by chronic skin inflammation, universal pruritus (itch), severe dehydration, and stunted growth. Patients with this disorder tend to have a hair shaft defect (trichorrhexis invaginata), also known as "bamboo hair". The disrupted skin barrier function in affected individuals also presents a high susceptibility to infection and allergy, leading to the development of scaly, reddish skin similar to atopic dermatitis. In severe cases, these atopic manifestations persist throughout the individual's life, and consequently post-natal mortality rates are high. In less severe cases, this develops into the milder ichthyosis linearis circumflexa.
Netherton syndrome has recently been characterised as a primary immunodeficiency, which straddles the innate and acquired immune system, much as does Wiskott-Aldrich syndrome. A group of Netherton patients have been demonstrated to have altered immunoglobulin levels (typically high IgE and low to normal IgG) and immature natural killer cells. These Natural Killer cells have a reduced lytic function; which can be improved with regular infusions of immunoglobulin (see 'Treatment'); although the mechanism for this is not clear.
Patients are more prone than healthy people to infections of all types, especially recurrent skin infections with staphylococcus. They may have more severe infections; but are not as vulnerable to opportunistic pathogens as patients with true Natural Killer cell deficiency-type SCID.
Netherton syndrome is a severe, autosomal recessive form of ichthyosis associated with mutations in the "SPINK5" gene. It is named after Earl W. Netherton (1910–1985), an American dermatologist who discovered it in 1958.
The precise symptoms of a primary immunodeficiency depend on the type of defect. Generally, the symptoms and signs that lead to the diagnosis of an immunodeficiency include recurrent or persistent infections or developmental delay as a result of infection. Particular organ problems (e.g. diseases involving the skin, heart, facial development and skeletal system) may be present in certain conditions. Others predispose to autoimmune disease, where the immune system attacks the body's own tissues, or tumours (sometimes specific forms of cancer, such as lymphoma). The nature of the infections, as well as the additional features, may provide clues as to the exact nature of the immune defect.
Pearson syndrome is a mitochondrial disease characterized by sideroblastic anemia and exocrine pancreas dysfunction. Other clinical features are failure to thrive, pancreatic fibrosis with insulin-dependent diabetes and exocrine pancreatic deficiency, muscle and neurologic impairment, and, frequently, early death. It is usually fatal in infancy. The few patients who survive into adulthood often develop symptoms of Kearns-Sayre syndrome.
It is caused by a deletion in mitochondrial DNA. Pearson syndrome is very rare, less than hundred cases have been reported in medical literature worldwide.
The syndrome was first described by pediatric hematologist and oncologist Howard Pearson in 1979; the deletions causing it were discovered a decade later.
The syndrome is a rare clinical disorder.
- Physical
- Overgrowth
- Accelerated skeletal maturation
- Dysmorphic facial features
- Prominent eyes
- Bluish sclerae
- Coarse eyebrows
- Upturned nose
- Radiologic examination
- Accelerated osseous maturation
- Phalangeal abnormalities
- Tubular thinning of the long bones
- Skull abnormalities
- Mental
- Often associated with intellectual disability (of variable degree)
In the beginning, medical officials defined ABCD syndrome by the four key characteristics of the syndrome. In the first case study of the Kurdish girl, researches described her as having "albinism and a black lock at the right temporo-occipital region along Blaschko lines, her eyelashes and brows were white, the irises in her eyes appeared to be blue, she had spots of retinal depigmentation, and she did not react to noise." The albinism is interesting in this diagnosis because the skin of an affected individual is albino pale besides the brown patches of mispigmented skin. The "black locks" described and seen in clinical pictures of the infants are thick patches of black hair above the ears that form a half circle reaching to the other ear to make a crest shape.
As identified in this first case study and stated in a dictionary of dermatologic syndromes, ABCD syndrome has many notable features, including "snow white hair in patches, distinct black locks of hair, skin white except brown macules, deafness, irises gray to blue, nystagmus, photophobia, poor visual activity, normal melanocytes in pigmented hair and skin, and absent melanocytes in areas of leukoderma." Individuals have the blue/gray irises typical of people affected by blindness. The C of ABCD syndrome is what distinguishes this genetic disorder from BADS and it involves cell migration disorder of the neurocytes of the gut. This characteristic occurs when nerve cells do not function correctly in the gut, which results in aganglionosis: The intestines’ failure to move food along the digestive tract. Deafness or being unresponsive to noise due to very low quality of hearing was reported in every case of ABCD syndrome. The characteristics of ABCD syndrome are clearly evident in an inflicted individual.
No longer considered a separate syndrome, ABCD syndrome is today considered to be a variation of Shah-Waardenburg type IV. Waardenburg syndrome (WS) is described as "the combination of sensorineural hearing loss, hypopigmentation of skin and hair, and pigmentary disturbances of the irides." Hearing loss and deafness, skin mispigmentation and albinism, and pigmentary changes in irises are the similarities between WS and ABCD. According to a dictionary of dermatologic syndromes, Waardenburg syndrome has many notable features, including "depigmentation of hair and skin – white forelock and premature graying of hair, confluent thick eyebrows, heterochromic irides or hypopigmentation of iris, laterally displaced inner canthi, congenital sensorineural deafness, broad nasal root, autosomal dominant disorder, and other associated findings, including black forelocks."
1. Blood. With Pearson Syndrome, the bone marrow fails to produce white blood cells called neutrophils. The syndrome also leads to anemia, low platelet count, and aplastic anemia It may be confused with transient erythroblastopenia of childhood.
2. Pancreas. Pearson Syndrome causes the exocrine pancreas to not function properly because of scarring and atrophy
Individuals with this condition have difficulty absorbing nutrients from their diet which leads to malabsorption. infants with this condition generally do not grow or gain weight.
ABCD syndrome is defined as albinism, black lock, cell migration disorder of the neurocytes of the gut, and deafness. It was initially misdiagnosed and later discovered that a homozygous mutation in the EDNRB gene causes ABCD syndrome. This helped scientists discover that it is the same as type IV Waardenburg syndrome, also known as Shah-Waardenburg syndrome.
One of the most prominent and visible symptoms of Nevo Syndrome is the prenatal overgrowth, which continues into the infant and toddler stage. This excessive weight gain can be attributed to the low concentrations of growth hormone and insulin growth factor that are normally present to regulate weight gain. Other common symptoms associated with Nevo Syndrome are the outward wrist-drop, edema in hands and feet, undescended testes, low-set ears, hypotonia, the presence of low muscle tone in children, and long tapered fingers, and a highly arched palate.
Theoretically, a mutation in any of the may cause disease, but below are some notable ones, with short description of symptoms:
- Adrenoleukodystrophy; leads to progressive brain damage, failure of the adrenal glands and eventually death.
- Alport syndrome; glomerulonephritis, endstage kidney disease, and hearing loss.
- Androgen insensitivity syndrome; variable degrees of undervirilization and/or infertility in XY persons of either gender
- Barth syndrome; metabolism distortion, delayed motor skills, stamina deficiency, hypotonia, chronic fatigue, delayed growth, cardiomyopathy, and compromised immune system.
- Blue cone monochromacy; low vision acuity, color blindness, photophobia, infantile nystagmus.
- Centronuclear myopathy; where cell nuclei are abnormally located in skeletal muscle cells. In CNM the nuclei are located at a position in the center of the cell, instead of their normal location at the periphery.
- Charcot–Marie–Tooth disease (CMTX2-3); disorder of nerves (neuropathy) that is characterized by loss of muscle tissue and touch sensation, predominantly in the feet and legs but also in the hands and arms in the advanced stages of disease.
- Coffin–Lowry syndrome; severe mental retardation sometimes associated with abnormalities of growth, cardiac abnormalities, kyphoscoliosis as well as auditory and visual abnormalities.
- Fabry disease; A lysosomal storage disease causing anhidrosis, fatigue, angiokeratomas, burning extremity pain and ocular involvement.
- Hunter's Syndrome; potentially causing hearing loss, thickening of the heart valves leading to a decline in cardiac function, obstructive airway disease, sleep apnea, and enlargement of the liver and spleen.
- Hypohidrotic ectodermal dysplasia, presenting with hypohidrosis, hypotrichosis, hypodontia
- Kabuki syndrome; multiple congenital anomalies and mental retardation.
- Spinal and bulbar muscular atrophy; muscle cramps and progressive weakness
- Lesch-Nyhan syndrome; neurologic dysfunction, cognitive and behavioral disturbances including self-mutilation, and uric acid overproduction (hyperuricemia)
- Lowe Syndrome; hydrophthalmia, cataracts, intellectual disabilities, aminoaciduria, reduced renal ammonia production and vitamin D-resistant rickets
- Menkes disease; sparse and coarse hair, growth failure, and deterioration of the nervous system
- Nasodigitoacoustic syndrome; mishaped nose, brachydactyly of the distal phalanges, sensorineural deafness
- Nonsyndromic deafness; hearing loss
- Norrie disease; cataracts, leukocoria along with other developmental issues in the eye
- Occipital horn syndrome; deformations in the skeleton
- Ocular albinism; lack of pigmentation in the eye
- Ornithine transcarbamylase deficiency; developmental delay and mental retardation. Progressive liver damage, skin lesions, and brittle hair may also be seen
- Siderius X-linked mental retardation syndrome; cleft lip and palate with mental retardation and facial dysmorphism, caused by mutations in the histone demethylase PHF8
- Simpson-Golabi-Behmel syndrome; coarse faces with protruding jaw and tongue, widened nasal bridge, and upturned nasal tip
- Spinal muscular atrophy caused by UBE1 gene mutation; weakness due to loss of the motor neurons of the spinal cord and brainstem
- Wiskott-Aldrich syndrome; eczema, thrombocytopenia, immune deficiency, and bloody diarrhea
- X-linked Severe Combined Immunodeficiency (SCID); infections, usually causing death in the first years of life
- X-linked sideroblastic anemia; skin paleness, fatigue, dizziness and enlarged spleen and liver.
Respiratory complications are often cause of death in early infancy.
There is no specific treatment or cure for individuals affected with this type of syndrome, though some of the abnormal physical features may be surgically correctable.
There is a range of signs and symptoms including cleft lip or palate, mental retardation and various forms of ectodermal dysplasia. Additional symptoms may include fused eyelids, absent nails, delayed bone growth and dry skin. It is believed that this syndrome follows an autosomal dominant pattern of inheritance with incomplete penetrance, and caused by a mutation affecting the TP63 gene. It has been suggested that this syndrome, AEC syndrome and Rapp–Hodgkin syndrome may be variations of the same disease.
The key affected features of this condition are described in its name.
Scalp: There are raised nodules over the posterior aspect of the scalp, covered by scarred non-hair bearing skin.
Ears: The shape of the pinnae is abnormal, with the superior edge of the pinna being turned over more than usual. The size of the tragus, antitragus and lobule may be small.
Nipples: The nipples are absent or rudimentary. The breasts may be small or virtually absent.
Other features of the condition include:
Dental abnormalities: missing or widely spaced teeth
Syndactyly: toes or fingers may be partially joined proximally
Renal abnormalities: renal hypoplasia, pyeloureteral duplication
Eye abnormalities: Cataract, coloboma of the iris and asymmetric pupils.
Little is known about the natural history of Roberts syndrome due to its wide clinical variability. The prognosis of the disease depends on the malformations, as the severity of the malformations correlates with survival. The cause of death for most fatalities of Roberts syndrome have not been reported; however, five deaths were reportedly due to infection.
The following are observations that have been made in individuals with cytogenetic findings of PCS/HR or ESCO2 mutations:
- The symptom of prenatal growth retardation is the most common finding and can be moderate to severe. Postnatal growth retardation can also be moderate to severe and correlates with the degree of severity of limb and craniofacial malformations.
- In limb malformations, the upper limbs are typically more severely affected than the lower limbs. There have been many cases of only upper limb malformation.
- In hand malformations, the thumb is most often affected, followed by the fifth finger (the little finger). In severe cases, the patient may only have three fingers and in rare cases only one.
- In craniofacial malformations, mildly affected individuals will have no abnormalities of the palate. The most severely affected will have a fronto-ethmoid-nasal-maxillary encephalocele.
- The severity of limb malformations and craniofacial malformations is correlated.
- Other abnormalities can occur in different parts of the body, including:
- Heart- atrial septal defects, ventricular septal defects, patent ductus arteriosus
- Kidneys- polycystic kidney, horseshoe kidney
- Male Genitals- enlarged penis, cryptorchidism
- Female Genitals- enlarged clitoris
- Hair- sparse, silvery-blonde scalp hair
- Cranial Nerve Paralysis, Moyamoya disease, Stroke, Intellectual disability
Nevo Syndrome is a rare autosomal recessive disorder that usually begins during the later stages of pregnancy. Nevo Syndrome is caused by a NSD1 deletion, which encodes for methyltransferase involved with chromatin regulation. The exact mechanism as to how the chromatin is changed is unknown and still being studied. Nevo Syndrome is an example of one of about twelve overgrowth syndromes known today. Overgrowth syndromes are characterized with children experiencing a significant overgrowth during pregnancy and also excessive postnatal growth. Studies concerning Nevo Syndrome have shown a similar relation to Ehlers-Danlos syndrome, a connective tissue disorder. Nevo Syndrome is associated with kyphosis, an abnormal increased forward rounding of the spine, joint laxity, postpartum overgrowth, a highly arched palate, undescended testes in males, low-set ears, increased head circumference, among other symptoms.
The hearing loss associated with Stickler syndrome can be progressive and usually involves the high frequencies. Sensorineural hearing loss has been reported in as many as 100% and as low as 20% of affected individuals. A conductive loss due to otitis can magnify an existing sensorineural loss and is a frequent problem for children with Stickler or Marshall Syndrome.
The most severe problem associated with Stickler syndrome is Pierre Robin syndrome. This refers to a cleft palate resulting from a very small lower jaw. During early fetal life, the roof of the mouth is normally open and the sides of the palate have to come together to close. If the jaw is too small, there is not enough room for the tongue which is then pushed up and gets in the way of the closing palate. Sometimes the chin is so small the baby has problems with eating and breathing if the tongue blocks the back of the throat. Cleft palate is found less frequently in Marshall Syndrome than in Stickler syndrome but still more frequently than in the general population.
The facial features of Marshall Syndrome include a flat midface, the appearance of large eyes, short upturned nose, and a round face. The facial features of Stickler syndrome are less prominent but include a rather long flat face, and depressed nasal bridge.