Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Children with Liddle syndrome are frequently asymptomatic. The first indication of the syndrome often is the incidental finding of hypertension during a routine physical exam. Because this syndrome is rare, it may only be considered by the treating physician after the child's hypertension does not respond to medications for lowering blood pressure.
Adults could present with nonspecific symptoms of low blood potassium, which can include weakness, fatigue, palpitations or muscular weakness (shortness of breath, constipation/abdominal distention or exercise intolerance). Additionally, long-standing hypertension could become symptomatic.
Liddle's syndrome, also called Liddle syndrome is a genetic disorder inherited in an autosomal dominant manner that is characterized by early, and frequently severe, high blood pressure associated with low plasma renin activity, metabolic alkalosis, low blood potassium, and normal to low levels of aldosterone. Liddle syndrome involves abnormal kidney function, with excess reabsorption of sodium and loss of potassium from the renal tubule, and is treated with a combination of low sodium diet and potassium-sparing diuretic drugs (e.g. amiloride). It is extremely rare, with fewer than 30 pedigrees or isolated cases having been reported worldwide as of 2008.
It can be asymptomatic, but these symptoms may be present:
- Fatigue
- Headache
- High blood pressure
- Hypokalemia
- Hypernatraemia
- Hypomagnesemia
- Intermittent or temporary paralysis
- Muscle spasms
- Muscle weakness
- Numbness
- Polyuria
- Polydipsia
- Tingling
- Metabolic alkalosis
Familial hyperaldosteronism is a group of inherited conditions in which the adrenal glands, which are small glands located on top of each kidney, produce too much of the hormone aldosterone. Excess aldosterone causes the kidneys to retain more salt than normal, which in turn increases the body's fluid levels and causes high blood pressure. People with familial hyperaldosteronism may develop severe high blood pressure, often early in life. Without treatment, hypertension increases the risk of strokes, heart attacks, and kidney failure. There are other forms of hyperaldosteronism that are not inherited.
Familial hyperaldosteronism is categorized into three types, distinguished by their clinical features and genetic causes. In familial hyperaldosteronism type I, hypertension generally appears in childhood to early adulthood and can range from mild to severe. This type can be treated with steroid medications called glucocorticoids, so it is also known as glucocorticoid-remediable aldosteronism (GRA). In familial hyperaldosteronism type II, hypertension usually appears in early to middle adulthood and does not improve with glucocorticoid treatment. In most individuals with familial hyperaldosteronism type III, the adrenal glands are enlarged up to six times their normal size. These affected individuals have severe hypertension that starts in childhood. The hypertension is difficult to treat and often results in damage to organs such as the heart and kidneys. Rarely, individuals with type III have milder symptoms with treatable hypertension and no adrenal gland enlargement.
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. The various types of familial hyperaldosteronism have different genetic causes.
It is unclear how common these diseases are. All together they appear to make up less than 1% of cases of hyperaldosteronism.
Hyperaldosteronism, also aldosteronism, is a medical condition wherein too much aldosterone is produced by the adrenal glands, which can lead to lowered levels of potassium in the blood (hypokalemia) and increased hydrogen ion excretion (alkalosis).
This cause of mineralocorticoid excess is primary hyperaldosteronism reflecting excess production of aldosterone by adrenal zona glomerulosa. Bilateral micronodular hyperplasia is more common than unilateral adrenal adenoma.
People often have few or no symptoms. They may get occasional muscular weakness, muscle spasms, tingling sensations, or excessive urination.
High blood pressure, manifestations of muscle cramps (due to hyperexcitability of neurons secondary to low blood calcium), muscle weakness (due to hypoexcitability of skeletal muscles secondary to hypokalemia), and headaches (due to low blood potassium or high blood pressure) may be seen.
Secondary hyperaldosteronism is often related to decreased cardiac output which is associated with elevated renin levels.
Patients with GRA may be asymptomatic, but the following symptoms can be present:
- Fatigue
- Headache
- High blood pressure
- Hypokalemia
- Intermittent or temporary paralysis
- Muscle spasms
- Muscle weakness
- Numbness
- Polyuria
- Polydipsia
- Tingling
- Hypernatraemia
- Metabolic alkalosis
Most affected cats present with muscular weakness and/or ocular signs of hypertension. Signs of muscle weakness can include a plantigrade stance of the hindlimbs, cervical ventroflexion, inability to jump, lateral recumbency, or collapse. Ocular signs of arterial hypertension include mydriasis, hyphema, or blindness due to retinal detachment and/or intraocular hemorrhages. A palpable mass in the cranial abdomen is another potential finding.
Blockage of urine flow in an area below the kidneys results in postrenal azotemia. It can be caused by congenital abnormalities such as vesicoureteral reflux, blockage of the ureters by kidney stones, pregnancy, compression of the ureters by cancer, prostatic hyperplasia, or blockage of the urethra by kidney or bladder stones. Like in prerenal azotemia, there is no inherent renal disease. The increased resistance to urine flow can cause back up into the kidneys, leading to hydronephrosis.
The BUN:Cr in postrenal azotemia is initially >15. The increased nephron tubular pressure (due to fluid back-up) causes increased reabsorption of urea, elevating it abnormally relative to creatinine. Persistent obstruction damages the tubular epithelium over time, and renal azotemia will result with a decreased BUN:Cr ratio.
In medicine (endocrinology), hypoaldosteronism refers to decreased levels of the hormone aldosterone.
Isolated hypoaldosteronism is the condition of having lowered aldosterone without corresponding changes in cortisol. (The two hormones are both produced by the adrenals.)
There are several causes for this condition, including adrenal insufficiency, congenital adrenal hyperplasia, and medications (certain diuretics, NSAIDs, and ACE inhibitors).
- Primary Aldosterone deficiency
1. Primary adrenal insufficiency
2. Congenital adrenal hyperplasia (21 and 11β but not 17)
3. Aldosterone synthase deficiency
- Secondary Aldosterone deficiency
1. Secondary adrenal insufficiency
2. Diseases of the pituitary or hypothalamus
- Hyporeninemic hypoaldosteronism (due to decreased angiotensin 2 production as well as intra-adrenal dysfunction)
1. Renal dysfunction-most commonly diabetic nephropathy
2. NSAIDs
3. Ciclosporin
A urinalysis will typically show a decreased urine sodium level, a high urine creatinine-to-serum creatinine ratio, a high urine urea-to-serum urea ratio, and concentrated urine (determined by osmolality and specific gravity). None of these is particularly useful in diagnosis.
In pre-renal and post-renal azotemias, elevation of the BUN exceeds that of the creatinine (i.e., BUN>12*creatinine). This is because BUN is readily absorbed while creatinine is not. In congestive heart failure (a cause of pre-renal azotemia) or any other condition that causes poor perfusion of kidneys, the sluggish flow of glomerular filtrate results in excessive absorption of BUN and elevation of its value in blood. Creatinine, however, is not absorbable and therefore does not rise significantly. Stasis of urine in post-renal azotemia has the same effect.
The condition is due to:
- Bilateral idiopathic (micronodular) adrenal hyperplasia (66%)
- Adrenal adenoma (Conn's syndrome) (33%)
- Primary (unilateral) adrenal hyperplasia—2% of cases
- Aldosterone-producing adrenocortical carcinoma—<1% of cases
- Familial Hyperaldosteronism (FH)
- Glucocorticoid-remediable aldosteronism (FH type I)—<1% of cases
- FH type II (APA or IHA)—<2% of cases
- Ectopic aldosterone-producing adenoma or carcinoma—< 0.1% of cases
Glucocorticoid remediable aldosteronism (GRA), also describable as "aldosterone synthase hyperactivity", is an autosomal dominant disorder in which the increase in aldosterone secretion produced by ACTH is no longer transient.
It is a cause of primary hyperaldosteronism.
Feline hyperaldosteronism is a disease in cats. The symptoms are caused by abnormally high concentrations of the hormone aldosterone, which is secreted by the adrenal gland. The high concentrations of aldosterone may be due directly to a disorder of the adrenal gland (primary hyperadlosteronism), or due to something outside of the adrenal gland causing it to secrete excessive aldosterone (secondary hyperaldosteronism).
Because of the ubiquity of arsenic in ground water supplies and its effect on cardiovascular health, low dose arsenic poisoning should be inferred as a part of the pathogenesis of idiopathic hypertension. Idiopathic and essential are both somewhat synonymous with primary hypertension. Arsenic exposure has also many of the same signs of primary hypertension such as headache, somnolence,
confusion, proteinuria
visual disturbances, and nausea and vomiting
Glucocorticoid deficiency 1 (FGD or GCCD) is an adrenocortical failure characterized by low levels of plasma cortisol produced by the adrenal gland despite high levels of plasma ACTH. This is an inherited disorder with several different causes which define the type.
FGD type 1 (FGD1 or GCCD1) is caused by mutations in the ACTH receptor (melanocortin 2 receptor; MC2R). FGD type 2 is caused by mutations in the MC2R accessory protein (MRAP). These two types account for 45% of all cases of FGD.
Some cases of FGD type 3 are caused by mutations in the steroidogenic acute regulatory protein (StAR), with similarity to the nonclassic form of lipoid congenital adrenal hyperplasia. In this case, a general impairment in not just adrenal steroid production, but gonadal steroid production can affect sexual development and fertility.
The causes of other cases of FGD type 3 not due to StAR are currently unknown.
If hyponatremia (low sodium) and hyperkalemia (high potassium) are severe, the resulting hypovolemia, prerenal azotemia, and cardiac arrhythmias may result in an Addisonian crisis. In severe cases, the patient may be presented in shock and moribund. Addisonian crisis must be differentiated from other life-threatening disorders such as diabetic ketoacidosis, necrotizing pancreatitis, and septic peritonitis.
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. The various types of familial hyperaldosteronism have different genetic causes. Familial hyperaldosteronism type I is caused by the abnormal joining together (fusion) of two similar genes called CYP11B1 and CYP11B2, which are located close together on chromosome 8. These genes provide instructions for making two enzymes that are found in the adrenal glands.
The CYP11B1 gene provides instructions for making an enzyme called 11-beta-hydroxylase. This enzyme helps produce hormones called cortisol and corticosterone. The CYP11B2 gene provides instructions for making another enzyme called aldosterone synthase, which helps produce aldosterone. When CYP11B1 and CYP11B2 are abnormally fused together, too much aldosterone synthase is produced. This overproduction causes the adrenal glands to make excess aldosterone, which leads to the signs and symptoms of familial hyperaldosteronism type I.
Familial hyperaldosteronism type III is caused by mutations in the KCNJ5 gene. The KCNJ5 gene provides instructions for making a protein that functions as a potassium channel, which means that it transports positively charged atoms (ions) of potassium into and out of cells. In the adrenal glands, the flow of ions through potassium channels produced from the KCNJ5 gene is thought to help regulate the production of aldosterone. Mutations in the KCNJ5 gene likely result in the production of potassium channels that are less selective, allowing other ions (predominantly sodium) to pass as well. The abnormal ion flow results in the activation of biochemical processes (pathways) that lead to increased aldosterone production, causing the hypertension associated with familial hyperaldosteronism type III.
The genetic cause of familial hyperaldosteronism type II is unknown.
Another common and under-recognized sign of hypertension is sleep apnea, which is often best treated with nocturnal nasal continuous positive airway pressure (CPAP), but other approaches include the Mandibular advancement splint (MAS), UPPP, tonsillectomy, adenoidectomy, septoplasty, or weight loss.
Another cause is an exceptionally rare neurological disease called Binswanger's disease, causing dementia; it is a rare form of multi-infarct dementia, and is one of the neurological syndromes associated with hypertension.
The most common clinical manifestations are related to mental status and gastrointestinal function; they include lethargy, anorexia, vomiting, weight loss, and weakness. Additional findings may include dehydration, bradycardia, weak femoral pulses, and abdominal pain. Polyuria and polydipsia, diarrhea, and shivering are occasionally reported.
Symptoms of hypoadrenocorticism can include vomiting, diarrhea, lethargy, lack of appetite, tremors or shaking, muscle weakness, low body temperature, collapse, low heart rate, and pain in the hind quarters. Hypoglycemia can also be present, and initially may be confused with seizure disorders, insulin-secreting pancreatic tumor (insulinoma), food poisoning, parvovirus enteritis, gastric volvulus, spinal or joint problems, earning hypoadrenocorticism the nicknames of "the Great Mimic" and "the Great Imitator". It is possible not to see any signs of the disease until 90% of the adrenal cortex is no longer functioning.
Signs and symptoms include: hypoglycemia, dehydration, weight loss, and disorientation. Additional signs and symptoms include weakness, tiredness, dizziness, low blood pressure that falls further when standing (orthostatic hypotension), cardiovascular collapse, muscle aches, nausea, vomiting, and diarrhea. These problems may develop gradually and insidiously. Addison's disease can present with tanning of the skin that may be patchy or even all over the body. Characteristic sites of tanning are skin creases (e.g. of the hands) and the inside of the cheek (buccal mucosa). Goitre and vitiligo may also be present. Eosinophilia may also occur.
Adrenal insufficiency is a condition in which the adrenal glands do not produce adequate amounts of steroid hormones, primarily cortisol; but may also include impaired production of aldosterone (a mineralocorticoid), which regulates sodium conservation, potassium secretion, and water retention. Craving for salt or salty foods due to the urinary losses of sodium is common.
Addison's disease and congenital adrenal hyperplasia can manifest as adrenal insufficiency. If not treated, adrenal insufficiency may result in severe abdominal pains, vomiting, profound muscle weakness and fatigue, depression, extremely low blood pressure (hypotension), weight loss, kidney failure, changes in mood and personality, and shock (adrenal crisis). An adrenal crisis often occurs if the body is subjected to stress, such as an accident, injury, surgery, or severe infection; death may quickly follow.
Adrenal insufficiency can also occur when the hypothalamus or the pituitary gland does not make adequate amounts of the hormones that assist in regulating adrenal function. This is called secondary or tertiary adrenal insufficiency and is caused by lack of production of ACTH in the pituitary or lack of CRH in the hypothalamus, respectively.
Glycerol Kinase Deficiency causes the condition known as hyperglycerolemia, an accumulation of glycerol in the blood and urine. This excess of glycerol in bodily fluids can lead to many more potentially dangerous symptoms. Common symptoms include vomiting and lethargy. These tend to be the only symptoms, if any, present in adult GKD which has been found to present with fewer symptoms than infant or juvenile GKD. When GKD is accompanied by Duchenne Muscular Dystrophy and Adrenal Hypoplasia Congenita, also caused by mutations on the Xp21 chromosome, the symptoms can become much more severe. Symptoms visible at or shortly after birth include:
- cryptorchidism
- strabismus
- seizures
Some other symptoms that become more noticeable with time would be:
- metabolic acidosis
- hypoglycemia
- adrenal cortex insufficiency
- learning disabilities
- osteoporosis
- myopathy
Many of the physically visible symptoms, such as cryptorchidism, strabismus, learning disabilities, and myopathy, tend to have an added psychological effect on the subject due to the fact that they can set him or her apart from those without GKD. Cryptorchidism, the failure of one or both of the testes to descend to the scrotum, has been known to lead to sexual identity confusion amongst young boys because it is such a major physiological anomaly. Strabismus is the misalignment of one’s eyes. Typically, one is focused but the other is “lazy” and is directed inward or out ward (up and down is less common but does occur).
Characteristic symptoms are:
- Sudden penetrating pain in the legs, lower back or abdomen
- Confusion, psychosis, slurred speech
- Severe lethargy
- Convulsions
- Fever
- Hyperkalemia (elevated potassium level in the blood)
- Hypercalcemia (elevated calcium level in the blood): the cause of hypercalcemia is a combination of increased calcium input into the extracellular space and reduced calcium removal by the kidney, this last caused by decreased glomerular filtration and increased tubular calcium reabsorption. Both renal factors are secondary to volume depletion and, in fact, improve rapidly during rehydration with saline infusion.
- Hypoglycemia (reduced level of blood glucose)
- Hyponatremia (low sodium level in the blood)
- Hypotension (low blood pressure)
- Hypothyroid (low T4 level)
- Severe vomiting and diarrhea, resulting in dehydration
- Syncope (loss of consciousness and ability to stand)