Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The symptoms of CAH vary depending upon the form of CAH and the sex of the patient. Symptoms can include:
Due to inadequate mineralocorticoids:
- vomiting due to salt-wasting leading to dehydration and death
Due to excess androgens:
- functional and average sized penis in cases involving extreme virilization (but no sperm)
- ambiguous genitalia, in some females, such that it can be initially difficult to identify external genitalia as "male" or "female".
- early pubic hair and rapid growth in childhood
- precocious puberty or failure of puberty to occur (sexual infantilism: absent or delayed puberty)
- excessive facial hair, virilization, and/or menstrual irregularity in adolescence
- infertility due to anovulation
- clitoromegaly, enlarged clitoris and shallow vagina
Due to insufficient androgens and estrogens:
- Undervirilization in XY males, which can result in apparently female external genitalia
- In females, hypogonadism can cause sexual infantilism or abnormal pubertal development, infertility, and other reproductive system abnormalities
Mineralocorticoid manifestations of severe 11β-hydroxylase deficient CAH can be biphasic, changing from deficiency (salt-wasting) in early infancy to excess (hypertension) in childhood and adult life.
Salt-wasting in early infancy does not occur in most cases of 11β-OH CAH but can occur because of impaired production of aldosterone aggravated by inefficiency of salt conservation in early infancy. When it occurs it resembles the salt-wasting of severe 21-hydroxylase deficient CAH: poor weight gain and vomiting in the first weeks of life progress and culminate in life-threatening dehydration, hyponatremia, hyperkalemia, and metabolic acidosis in the first month.
Despite the inefficient production of aldosterone, the more characteristic mineralocorticoid effect of 11β-OH CAH is hypertension. Progressive adrenal hyperplasia due to persistent elevation of ACTH results in extreme overproduction of 11-deoxycorticosterone (DOC) by mid-childhood. DOC is a weak mineralocorticoid, but usually reaches high enough levels in this disease to cause effects of mineralocorticoid excess: salt retention, volume expansion, and hypertension.
Female infants with classic CAH have ambiguous genitalia due to exposure to high concentrations of androgens in utero. CAH due to 21-hydroxylase deficiency is the most common cause of ambiguous genitalia in genotypically normal female infants (46XX). Less severely affected females may present with early pubarche. Young women may present with symptoms of polycystic ovarian syndrome (oligomenorrhea, polycystic ovaries, hirsutism).
Males with classic CAH generally have no signs of CAH at birth. Some may present with hyperpigmentation, due to co-secretion with melanocyte-stimulating hormone (MSH), and possible penile enlargement. Age of diagnosis of males with CAH varies and depends on the severity of aldosterone deficiency. Boys with salt-wasting disease present early with symptoms of hyponatremia and hypovolemia. Boys with non-salt-wasting disease present later with signs of virilization.
In rarer forms of CAH, males are under-masculinized and females generally have no signs or symptoms at birth.
Most infants born with lipoid CAH have had genitalia female enough that no disease was suspected at birth. Because the adrenal zona glomerulosa is undifferentiated and inactive before delivery, it is undamaged at birth and can make aldosterone for a while, so the eventual salt-wasting crisis develops more gradually and variably than with severe 21-hydroxylase-deficient CAH.
Most come to medical attention between 2 weeks and 3 months of age, when after a period of poor weight gain and vomiting, they were found to be dehydrated, with severe hyponatremia, hyperkalemia, and metabolic acidosis ("Addisonian or adrenal crisis"). Renin but not aldosterone is elevated. Many infants born with this condition died before a method for diagnosis was recognized for proper treatment to begin. In some cases, the condition is more mild with signs and symptoms of mineralocorticoid and glucocorticoid deficiency appearing after months or even years (late onset).
Because 11β-hydroxylase activity is not necessary in the production of sex steroids (androgens and estrogens), the hyperplastic adrenal cortex produces excessive amounts of DHEA, androstenedione, and especially testosterone.
These androgens produce effects that are similar to those of 21-hydroxylase deficient CAH. In the severe forms, XX (genetically female) fetuses can be markedly virilized, with ambiguous genitalia that look more male than female, though internal female organs, including ovaries and uterus develop normally.
XY fetuses (genetic males) typically show no abnormal features related to androgen excess. A megalopenis (>22 cm/8.7in) is usually present in male patients.
In milder mutations, androgen effects in both sexes appear in mid-childhood as early pubic hair, overgrowth, and accelerated bone age. Although "nonclassic" forms causing hirsutism and menstrual irregularities and appropriate steroid elevations have been reported, most have not had verifiable mutations and mild 11β-hydroxylase deficient CAH is currently considered a very rare cause of hirsutism and infertility.
All of the issues related to virilization, neonatal assignment, advantages and disadvantages of genital surgery, childhood and adult virilization, gender identity and sexual orientation are similar to those of 21-hydroxylase CAH and elaborated in more detail in Congenital adrenal hyperplasia.
Lipoid congenital adrenal hyperplasia is an endocrine disorder that is an uncommon and potentially lethal form of congenital adrenal hyperplasia (CAH). It arises from defects in the earliest stages of steroid hormone synthesis: the transport of cholesterol into the mitochondria and the conversion of cholesterol to pregnenolone—the first step in the synthesis of all steroid hormones. Lipoid CAH causes mineralocorticoid deficiency in affected infants and children. Male infants are severely undervirilized causing their external genitalia to look feminine. The adrenals are large and filled with lipid globules derived from cholesterol.
Mutations that result in some residual 21-hydroxylase activity cause milder disease, traditionally termed simple virilizing CAH (SVCAH). In these children the mineralocorticoid deficiency is less significant and salt-wasting does not occur. However, genital ambiguities are possible.
The mineralocorticoid aspect of severe 3β-HSD CAH is similar to those of 21-hydroxylase deficiency. Like other enzymes involved in early stages of both aldosterone and cortisol synthesis, the severe form of 3β-HSD deficiency can result in life-threatening salt-wasting in early infancy. Salt-wasting is managed acutely with saline and high-dose hydrocortisone, and long-term fludrocortisone.
The androgen excess is mild enough that virilization is not apparent or goes unrecognized at birth and in early childhood. However, androgen levels are above normal and slowly rise during childhood, producing noticeable effects between 2 and 9 years of age.
Appearance of pubic hair in mid-childhood is the most common feature that leads to evaluation and diagnosis. Other accompanying features are likely to be tall stature and accelerated bone age (often 3–5 years ahead). Often present are increased muscle mass, acne, and adult body odor. In boys the penis will be enlarged. Mild clitoral enlargement may occur in girls, and sometimes a degree of prenatal virilization is recognized that may have gone unnoticed in infancy.
The principal goals of treatment of non-classical CAH are to preserve as much growth as possible and to prevent central precocious puberty if it has not already been triggered. These are more difficult challenges than in CAH detected in infancy because moderate levels of androgens will have had several years to advance bone maturation and to trigger central puberty before the disease is detected.
A diagnosis of non-classical CAH is usually confirmed by discovering extreme elevations of 17α-hydroxyprogesterone along with moderately high testosterone levels. A cosyntropin stimulation test may be needed in mild cases, but usually the random levels of 17OHP are high enough to confirm the diagnosis.
The mainstay of treatment is suppression of adrenal testosterone production by a glucocorticoid such as hydrocortisone. Mineralocorticoid is only added in cases where the plasma renin activity is high.
A third key aspect of management is suppression of central precocious puberty if it has begun. The usual clues to central puberty in boys are that the testes are pubertal in size, or that testosterone remains elevated even when the 17OHP has been reduced toward normal. In girls central puberty is less often a problem, but breast development would be the main clue. Central precocious puberty is suppressed when appropriate by leuprolide.
As outlined above, recent additions to treatment to preserve growth include aromatase inhibition to slow bone maturation by reducing the amount of testosterone converted to estradiol, and use of blockers of estrogen for the same purpose.
Once adrenal suppression has been achieved, the patient needs stress steroid coverage as described above for significant illness or injury.
Other alleles result in even milder degrees of hyperandrogenism that may not even cause problems in males and may not be recognized until adolescence or later in females. Mild androgen effects in young women may include hirsutism, acne, or anovulation (which in turn can cause infertility). Testosterone levels in these women may be mildly elevated, or simply above average. These clinical features, of course, are those of polycystic ovary syndrome, and a small percentage of women with Polycystic Ovary Syndrome (PCOS) are found to have late-onset CAH when investigated.
Diagnosis of late-onset CAH may be suspected from a high 17α-hydroxyprogesterone level, but some cases are so mild that the elevation is only demonstrable after cosyntropin stimulation. Treatment may involve a combination of very low dose glucocorticoid to reduce adrenal androgen production and any of various agents to block the androgen effects and/or induce ovulation.
It was characterized in 1979 by Dr. Maria New. Prevalence has been described as 1 in 100 in certain populations.
Genetic XX females affected by total 17α-hydroxylase deficiency are born with normal female internal and external anatomy. At the expected time of puberty neither the adrenals nor the ovaries can produce sex steroids, so neither breast development nor pubic hair appear. Investigation of delayed puberty yields elevated gonadotropins and normal karyotype, while imaging confirms the presence of ovaries and an infantile uterus. Discovery of hypertension and hypokalemic alkalosis usually suggests the presence of one of the proximal forms of CAH, and the characteristic mineralocorticoid elevations confirm the specific diagnosis.
Milder forms of this deficiency in genetic females allow some degree of sexual development, with variable reproductive system dysregulation that can include incomplete Tanner scale development, retrograde sexual development, irregular menstruation, early menopause, or – in very mild cases – no physical symptoms beyond infertility.
Evidence suggests that only 5% of normal enzyme activity may be enough to allow at least the physical changes of female puberty, if not ovulation and fertility. In women with mild cases, elevated blood pressure and/or infertility is the presenting clinical problem.
17α-Hydroxylase deficiency in genetic males (XY) results in moderate to severe reduction of fetal testosterone production by both adrenals and testes. Undervirilization is variable and sometimes complete. The appearance of the external genitalia ranges from normal female to ambiguous to mildly underdeveloped male. The most commonly described phenotype is a small phallus, perineal hypospadias, small blind pseudovaginal pouch, and intra-abdominal or inguinal testes. Wolffian duct derivatives are hypoplastic or normal, depending on degree of testosterone deficiency. Some of those with partial virilization develop gynecomastia at puberty even though masculinization is reduced. The presence of hypertension in the majority distinguishes them from other forms of partial androgen deficiency or insensitivity. Fertility is impaired in those with more than minimal testosterone deficiency.
The sex steroid consequences of severe 3β-HSD CAH are unique among the congenital adrenal hyperplasias: it is the only form of CAH that can produce ambiguity in both sexes. As with 21-hydroxylase deficient CAH, the degree of severity can determine the magnitude of over- or undervirilization.
In an XX (genetically female) fetus, elevated amounts of DHEA can produce moderate virilization by conversion in the liver to testosterone. Virilization of genetic females is partial, often mild, and rarely raises assignment questions. The issues surrounding corrective surgery of the virilized female genitalia are the same as for moderate 21-hydroxylase deficiency but surgery is rarely considered desirable.
The extent to which mild 3β-HSD CAH can cause early appearance of pubic hair and other aspects of hyperandrogenism in later childhood or adolescence is unsettled. Early reports about 20 years ago suggesting that mild forms of 3β-HSD CAH comprised significant proportions of girls with premature pubic hair or older women with hirsutism have not been confirmed and it now appears that premature pubarche in childhood and hirsutism after adolescence are not common manifestations of 3β-HSD CAH.
Undervirilization of genetic males with 3β-HSD CAH occurs because synthesis of testosterone is impaired in both adrenals and testes. Although DHEA is elevated, it is a weak androgen and too little testosterone is produced in the liver to offset the deficiency of testicular testosterone. The degree of undervirilization is more variable, from mild to severe. Management issues are those of an undervirilized male with normal sensitivity to testosterone.
If the infant boy is only mildly undervirilized, the hypospadias can be surgically repaired, testes brought into the scrotum, and testosterone supplied at puberty.
Management decisions are more difficult for a moderately or severely undervirilized genetic male whose testes are in the abdomen and whose genitalia look at least as much female as male. Male sex can assigned and major reconstructive surgery done to close the midline of the perineum and move the testes into a constructed scrotum. Female sex can be assigned and the testes removed and vagina enlarged surgically. A recently advocated third choice would be to assign either sex and defer surgery to adolescence. Each approach carries its own disadvantages and risks. Children and their families are different enough that none of the courses is appropriate for all.
Congenital adrenal hyperplasia due to 17α-hydroxylase deficiency is an uncommon form of congenital adrenal hyperplasia resulting from a defect in the gene CYP17A1, which encodes for the enzyme 17α-hydroxylase. It produces decreased synthesis of both cortisol and sex steroids, with resulting increase in mineralocorticoid production. Thus, common symptoms include mild hypocortisolism, ambiguous genitalia in genetic males or failure of the ovaries to function at puberty in genetic females, and hypokalemic hypertension (respectively). However, partial (incomplete) deficiency is notable for having inconsistent symptoms between patients, and affected genetic (XX) females may be wholly asymptomatic except for infertility.
Adrenal gland disorders (or diseases) are conditions that interfere with the normal functioning of the adrenal glands. Adrenal disorders may cause hyperfunction or hypofunction, and may be congenital or acquired.
The adrenal gland produces hormones that affects growth, development and stress, and also helps to regulate kidney function. There are two parts of the adrenal glands, the adrenal cortex and the adrenal medulla. The adrenal cortex produces mineralocorticoids, which regulate salt and water balance within the body, glucocorticoids (including cortisol) which have a wide number of roles within the body, and androgens, hormones with testosterone-like function. The adrenal medulla produces epinephrine (adrenaline) and norepinephrine (noradrenaline). Disorders of the adrenal gland may affect the production of one or more of these hormones.
There are three major types of adrenal insufficiency.
- Primary adrenal insufficiency is due to impairment of the adrenal glands.
- 80% are due to an autoimmune disease called Addison's disease or autoimmune adrenalitis.
- One subtype is called idiopathic, meaning of unknown cause.
- Other cases are due to congenital adrenal hyperplasia or an adenoma (tumor) of the adrenal gland.
- Secondary adrenal insufficiency is caused by impairment of the pituitary gland or hypothalamus. Its principal causes include pituitary adenoma (which can suppress production of adrenocorticotropic hormone (ACTH) and lead to adrenal deficiency unless the endogenous hormones are replaced); and Sheehan's syndrome, which is associated with impairment of only the pituitary gland.
- Tertiary adrenal insufficiency is due to hypothalamic disease and a decrease in the release of corticotropin releasing hormone (CRH). Causes can include brain tumors and sudden withdrawal from long-term exogenous steroid use (which is the most common cause overall).
Signs and symptoms include: hypoglycemia, dehydration, weight loss, and disorientation. Additional signs and symptoms include weakness, tiredness, dizziness, low blood pressure that falls further when standing (orthostatic hypotension), cardiovascular collapse, muscle aches, nausea, vomiting, and diarrhea. These problems may develop gradually and insidiously. Addison's disease can present with tanning of the skin that may be patchy or even all over the body. Characteristic sites of tanning are skin creases (e.g. of the hands) and the inside of the cheek (buccal mucosa). Goitre and vitiligo may also be present. Eosinophilia may also occur.
There are a multitude of different etiologies of HH. Congenital causes include the following:
- Chromosomal abnormalities (resulting in gonadal dysgenesis) - Turner's syndrome, Klinefelter's syndrome, Swyer's syndrome, XX gonadal dysgenesis, and mosaicism.
- Defects in the enzymes involved in the gonadal biosynthesis of the sex hormones - 17α-hydroxylase deficiency, 17,20-lyase deficiency, 17β-hydroxysteroid dehydrogenase III deficiency, and lipoid congenital adrenal hyperplasia.
- Gonadotropin resistance (e.g., due to inactivating mutations in the gonadotropin receptors) - Leydig cell hypoplasia (or insensitivity to LH) in males, FSH insensitivity in females, and LH and FSH resistance due to mutations in the "GNAS" gene (termed pseudohypoparathyroidism type 1A).
Acquired causes (due to damage to or dysfunction of the gonads) include ovarian torsion, vanishing/anorchia, orchitis, premature ovarian failure, ovarian resistance syndrome, trauma, surgery, autoimmunity, chemotherapy, radiation, infections (e.g., sexually-transmitted diseases), toxins (e.g., endocrine disruptors), and drugs (e.g., antiandrogens, opioids, alcohol).
Examples of symptoms of hypogonadism include delayed, reduced, or absent puberty, low libido, and infertility.
The symptoms of Addison's disease develop gradually and may become established before they are recognized. They can be nonspecific and are potentially attributable to other medical conditions.
The signs and symptoms include fatigue; lightheadedness upon standing or difficulty standing, muscle weakness, fever, weight loss, anxiety, nausea, vomiting, diarrhea, headache, sweating, changes in mood or personality, and joint and muscle pains. Some patients have cravings for salt or salty foods due to the loss of sodium through their urine. Hyperpigmentation of the skin may be seen, particularly when the patient lives in a sunny area, as well as darkening of the palmar crease, sites of friction, recent scars, the vermilion border of the lips, and genital skin. These skin changes are not encountered in secondary and tertiary hypoadrenalism.
On physical examination, these clinical signs may be noticed:
- Low blood pressure with or without orthostatic hypotension (blood pressure that decreases with standing)
- Darkening (hyperpigmentation) of the skin, including areas not exposed to the sun. Characteristic sites of darkening are skin creases (e.g., of the hands), nipple, and the inside of the cheek (buccal mucosa); also, old scars may darken. This occurs because melanocyte-stimulating hormone (MSH) and ACTH share the same precursor molecule, pro-opiomelanocortin (POMC). After production in the anterior pituitary gland, POMC gets cleaved into gamma-MSH, ACTH, and beta-lipotropin. The subunit ACTH undergoes further cleavage to produce alpha-MSH, the most important MSH for skin pigmentation. In secondary and tertiary forms of adrenal insufficiency, skin darkening does not occur, as ACTH is not overproduced.
Addison's disease is associated with the development of other autoimmune diseases, such as type I diabetes, thyroid disease (Hashimoto's thyroiditis), celiac disease, or vitiligo. Addison’s disease may be the only manifestation of undiagnosed celiac disease. Both diseases share the same genetic risk factors (HLA-DQ2 and HLA-DQ8 haplotypes).
The presence of Addison's in addition to mucocutaneous candidiasis, hypoparathyroidism, or both, is called autoimmune polyendocrine syndrome type 1. The presence of Addison's in addition to autoimmune thyroid disease, type 1 diabetes, or both, is called autoimmune polyendocrine syndrome type 2.
Adrenal Adenomas are benign tumors on the adrenal gland. In most cases the tumors display no symptoms and require no treatment. In rare cases, however, some Adrenal Adenomas may become activated, in that they begin to produce hormones in much larger quantities than what adrenal glands tend to produce leading to a number of health complications including Primary aldosteronism and Hyperandrogenism.
An "Addisonian crisis" or "adrenal crisis" is a constellation of symptoms that indicates severe adrenal insufficiency. This may be the result of either previously undiagnosed Addison's disease, a disease process suddenly affecting adrenal function (such as adrenal hemorrhage), or an intercurrent problem (e.g., infection, trauma) in someone known to have Addison's disease. It is a medical emergency and potentially life-threatening situation requiring immediate emergency treatment.
Characteristic symptoms are:
- Sudden penetrating pain in the legs, lower back, or abdomen
- Severe vomiting and diarrhea, resulting in dehydration
- Low blood pressure
- Syncope (loss of consciousness and ability to stand)
- Hypoglycemia (reduced level of blood glucose)
- Confusion, psychosis, slurred speech
- Severe lethargy
- Hyponatremia (low sodium level in the blood)
- Hyperkalemia (elevated potassium level in the blood)
- Hypercalcemia (elevated calcium level in the blood)
- Convulsions
- Fever
An arrhenoblastoma is an uncommon tumor of the ovary. It is often composed of sterol cells, leydig cells or some combination of the two. The tumor can produce male or female hormones in the patient and may cause masculinization. In a prepubescent child, a tumor may cause precocious puberty. Malignant Arrhenoblastoma accounts for 30% of all cases of Arrhenoblastoma, the other 70% being largely benign and curable with surgery.
People often have few or no symptoms. They may get occasional muscular weakness, muscle spasms, tingling sensations, or excessive urination.
High blood pressure, manifestations of muscle cramps (due to hyperexcitability of neurons secondary to low blood calcium), muscle weakness (due to hypoexcitability of skeletal muscles secondary to hypokalemia), and headaches (due to low blood potassium or high blood pressure) may be seen.
Secondary hyperaldosteronism is often related to decreased cardiac output which is associated with elevated renin levels.
A adrenocortical adenoma (or adrenal cortical adenoma, or sometimes simply adrenal adenoma) is a benign tumor of the adrenal cortex.
It can present with Cushing's syndrome or primary aldosteronism. They may also secrete androgens, causing hyperandrogenism. Also, they are often diagnosed incidentally as incidentalomas.
Is a well circumscribed, yellow tumour in the adrenal cortex, which is usually 2–5 cm in diameter. The color of the tumour, as with adrenal cortex as a whole, is due to the stored lipid (mainly cholesterol), from which the cortical hormones are synthesized. These tumors are frequent incidental findings at post mortem examination, and appear to have produced no significant metabolic disorder; only a very small percentage lead to Cushing's syndrome. Nevertheless, these apparently non-functioning adenomas are most often encountered in elder obese people. There is some debate that they may really represent nodules in diffuse nodular cortical hyperplasia.
Very occasionally, a true adrenal cortical adenoma is associated with the clinical manifestations of Conn's syndrome, and can be shown to be excreting mineralocorticoids.
The symptoms of isolated 17,20-lyase deficiency, in males, include pseudohermaphroditism (i.e., feminized, ambiguous, or mildly underdeveloped (e.g., micropenis, perineal hypospadias, and/or cryptorchidism (undescended testes)) external genitalia), female gender identity, and, in non-complete cases of deficiency where partial virilization occurs, gynecomastia up to Tanner stage V (due to low androgen levels, which results in a lack of suppression of estrogen); in females, amenorrhoea or, in cases of only partial deficiency, merely irregular menses, and enlarged cystic ovaries (due to excessive stimulation by high levels of gonadotropins); and in both sexes, hypergonadotropic hypogonadism (hypogonadism despite high levels of gonadotropins), delayed, impaired, or fully absent adrenarche and puberty with an associated reduction in or complete lack of development of secondary sexual characteristics (sexual infantilism), impaired fertility or complete sterility, tall stature (due to delayed epiphyseal closure), eunuchoid skeletal proportions, delayed or absent bone maturation, and osteoporosis.
One of the main characteristics of this disorder is adrenal insufficiency, which is a reduction in adrenal gland function resulting from incomplete development of the gland's outer layer (the adrenal cortex). Adrenal insufficiency typically begins in infancy or in childhood and can cause vomiting, difficulty with feeding, dehydration, extremely low blood sugar (hypoglycemia), low sodium levels, and shock. However, adult-onset cases have also been described. See also Addison's Disease.
Affected males may also lack male sex hormones, which leads to underdeveloped reproductive tissues, undescended testicles (cryptorchidism), delayed puberty, and an inability to father children (infertility). These characteristics are known as hypogonadotropic hypogonadism. Females are rarely affected by this disorder, but a few cases have been reported of adrenal insufficiency or a lack of female sex hormones, resulting in underdeveloped reproductive tissues, delayed puberty, and an absence of menstruation.