Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Symptoms typically are onset in the adult years, although, childhood cases have also been observed. Common symptoms include a loss of coordination which is often seen in walking, and slurred speech. ADCA primarily affects the cerebellum, as well as, the spinal cord. Some signs and symptoms are:
Autosomal dominant cerebellar ataxia (ADCA) is a form of spinocerebellar ataxia inherited in an autosomal dominant manner. ADCA is a genetically inherited condition that causes deterioration of the nervous system leading to disorder and a decrease or loss of function to regions of the body.
Degeneration occurs at the cellular level and in certain subtypes results in cellular death. Cellular death or dysfunction causes a break or faulty signal in the line of communication from the central nervous system to target muscles in the body. When there is impaired communication or a lack of communication entirely, the muscles in the body do not function correctly. Muscle control complications can be observed in multiple balance, speech, and motor or movement impairment symptoms. ADCA is divided into three types and further subdivided into subtypes known as SCAs (spinocerebellar ataxias).
Spinocerebellar ataxia (SCA) is one of a group of genetic disorders characterized by slowly progressive incoordination of gait and is often associated with poor coordination of hands, speech, and eye movements. A review of different clinical features among SCA subtypes was recently published describing the frequency of non-cerebellar features, like parkinsonism, chorea, pyramidalism, cognitive impairment, peripheral neuropathy, seizures, among others. As with other forms of ataxia, SCA frequently results in atrophy of the cerebellum, loss of fine coordination of muscle movements leading to unsteady and clumsy motion, and other symptoms.
The symptoms of an ataxia vary with the specific type and with the individual patient. In general, a person with ataxia retains full mental capacity but progressively loses physical control.
The signs/symptoms of this condition are consistent with the following:
- Intellectual disability,
- Muscular hypotonia
- Encephalitis
- Seizures
- Aphasia
Spinocerebellar ataxia (SCA), also known as spinocerebellar atrophy or spinocerebellar degeneration, is a progressive, degenerative, genetic disease with multiple types, each of which could be considered a disease in its own right. An estimated 150,000 people in the United States have a diagnosis of spinocerebellar ataxia at any given time. SCA is hereditary, progressive, degenerative, and often fatal. There is no known effective treatment or cure. SCA can affect anyone of any age. The disease is caused by either a recessive or dominant gene. In many cases people are not aware that they carry a relevant gene until they have children who begin to show signs of having the disorder.
2-hydroxyglutaric aciduria is an organic aciduria, and because of the stereoisomeric property of 2-hydroxyglutarate different variants of this disorder are distinguished:
Patients with idiopathic macular telangiectasia type 1 are typically 40 years of age or older. They may have a coincident history of ischemic vascular diseases such as diabetes or hypertension, but these do not appear to be causative factors.
Macular telangiectasia type 2 usually present first between the ages of 50 and 60 years, with a mean age of 55–59 years. They may present with a wide range of visual impact, from totally asymptomatic to substantially impaired; in most cases however, patients retain functional acuity of 20/200 or better. Metamorphopsia may be a subjective complaint. Due to the development of paracentral scotomota (blind spots), reading ability is impaired early in the disease course. It might be even the first symptom of the disease.
The condition may remain stable for extended periods, sometimes interspersed with sudden decreases in vision. Patients’ loss of visual function is disproportionately worse than the impairment of their visual acuity, which is only mildly affected in many cases. In patients with MacTel, as compared with a reference population, there is a significantly higher prevalence of systemic conditions associated with vascular disease, including history of hypertension, history of diabetes, and history of coronary disease. MacTel does not cause total blindness, yet it commonly causes gradual loss of the central vision required for reading and driving.
All types of Griscelli syndrome have distinctive skin and hair coloring.
Type 1 is associated with eurological abnormalities. These include delayed development, intellectual disability, seizures, hypotonia and eye abnormalities.
Type 2 - unlike type 1 - is not associated primary neurological disease but is associated with an uncontrolled T lymphocyte expansion and macrophage activation syndrome. It is often associated with the hemophagocytic syndrome. This latter condition may be fatal in the absence of bone marrow transplantation.
Persons with type 3 have the typical light skin and hair coloring but are otherwise normal.
Symptoms(and signs) that are consistent with this disorder are the following:
The differential diagnosis is quite extensive and includes
- Buschke–Fischer–Brauer disease
- Curth–Macklin ichthyosis
- Gamborg Nielsen syndrome
- Greither disease
- Haber syndrome
- Hereditary punctate palmoplantar keratoderma
- Jadassohn–Lewandowsky syndrome
- Keratosis follicularis spinulosa decalvans
- Keratosis linearis with ichthyosis congenital and sclerosing keratoderma syndrome
- Meleda disease
- Mucosa hyperkeratosis syndrome
- Naegeli–Franceschetti–Jadassohn syndrome
- Naxos disease
- Olmsted syndrome
- Palmoplantar keratoderma and leukokeratosis anogenitalis
- Pandysautonomia
- Papillomatosis of Gougerot and Carteaud
- Papillon–Lefèvre syndrome
- Punctate porokeratotic keratoderma
- Richner–Hanhart syndrome
- Schöpf–Schulz–Passarge syndrome
- Unna Thost disease
- Vohwinkel syndrome
- Wong's dermatomyositis
Familial partial lipodystrophy (FPL), also known as Köbberling–Dunnigan syndrome, is a rare genetic metabolic condition characterized by the loss of subcutaneous fat.
FPL also refers to a rare metabolic condition in which there is a loss of subcutaneous fat in the arms, legs and lower torso. The upper section of the body, face, neck, shoulders, back and trunk carry an excess amount of fat.
As the body is unable to store fat correctly this leads to fat around all the vital organs and in the blood (triglycerides). This results in heart problems, cirrhosis of the liver, lipoatrophic diabetes, and pancreatitis, along with various other complications.
The fifth type of hyper-IgM syndrome has been characterized in three patients from France and Japan. The symptoms are similar to hyper IgM syndrome type 2, but the AICDA gene is intact. These three patients instead had mutations in the catalytic domain of uracil-DNA glycosylase, an enzyme that removes uracil from DNA. In both type 2 and type 5 hyper-IgM syndromes, the patients are profoundly deficient in IgG and IgA because the B cells can't carry out the recombination steps necessary to class-switch.
Autoimmune polyendocrine syndrome type 2, a form of autoimmune polyendocrine syndrome also known as Schmidt's syndrome, or APS-II, is the most common form of the polyglandular failure syndromes. It is heterogeneous and has not been linked to one gene. Rather, individuals are at a higher risk when they carry a particular human leukocyte antigen (HLA-DQ2, HLA-DQ8 and HLA-DR4). APS-II affects women to a greater degree than men.
Macular telangiectasia describes two distinct retinal diseases affecting the macula of the eye, macular telangiectasia type 1 and macular telangiectasia type 2.
Macular telangiectasia (MacTel) type 1 is a very rare disease, typically unilateral and usually affecting male patients. MacTel type 2 is more frequent than type 1 and generally affects both eyes (bilateral). It usually affects both sexes equally. Both types of MacTel should not be confused with Age-related macular degeneration (AMD), from which it can be distinguished by symptoms, clinical features, pathogenesis, and disease management. However, both AMD and MacTel eventually lead to (photoreceptor) atrophy and thus loss of central vision.
The etiology of both types of MacTel is still unknown and no treatment has been found to be effective to prevent further progression. Because lost photoreceptors cannot be recovered, early diagnosis and treatment appear to be essential to prevent loss of visual function. Several centers are currently trying to find new diagnostics and treatments to understand the causes and biochemical reactions in order to halt or counteract the adverse effects.
Contemporary research has shown that MacTel type 2 is likely a neurodegenerative disease with secondary changes of the blood vessels of the macula. Although MacTel type 2 has been previously regarded as a rare disease, it is in fact probably much more common than previously thought. The very subtle nature of the early findings in MacTel mean the diagnoses are often missed by optometrists and general ophthalmologists. Due to increased research activity since 2005, many new insights have been gained into this condition since its first description by Dr. J. Donald Gass in 1982.
Griscelli syndrome type 2 (also known as "partial albinism with immunodeficiency") is a rare autosomal recessive syndrome characterized by variable pigmentary dilution, hair with silvery metallic sheen, frequent pyogenic infections, neutropenia, and thrombocytopenia.
Howel–Evans syndrome is an extremely rare condition involving thickening of the skin in the palms of the hands and the soles of the feet (hyperkeratosis). This familial disease is associated with a high lifetime risk of esophageal cancer. For this reason, it is sometimes known as tylosis with oesophageal cancer (TOC).
The condition is inherited in an autosomal dominant manner, and it has been linked to a mutation in the "RHBDF2" gene. It was first described in 1958.
Glutaric acidemia type 2 often appears in infancy as a sudden metabolic crisis, in which acidosis and low blood sugar (hypoglycemia) cause weakness, behavior changes, and vomiting. There may also be enlargement of the liver, heart failure, and a characteristic odor resembling that of sweaty feet. Some infants with glutaric acidemia type 2 have birth defects, including multiple fluid-filled growths in the kidneys (polycystic kidneys). Glutaric acidemia type 2 is a very rare disorder. Its precise incidence is unknown. It has been reported in several different ethnic groups.
Hyper IgM Syndrome Type 2 is a rare disease. Unlike other hyper-IgM syndromes, the Type 2 patients identified thus far did not present with a history of opportunistic infections. One would expect opportunistic infections in any immunodeficiency syndrome. The putative genetic lesion is in the AICDA gene found at 12p13. The patients have three common findings:
- the absence of immunoglobulin class switch recombination
- the lack of immunoglobulin somatic hypermutations, and
- lymph node hyperplasia caused by the presence of giant germinal centers.
Glutaric acidemia type 2 is an autosomal recessive metabolic disorder that is characterised by defects in the ability of the body to use proteins and fats for energy. Incompletely processed proteins and fats can build up, leading to a dangerous chemical imbalance called acidosis.
The presence of a small eye within the orbit can be a normal incidental finding but in most cases it is abnormal and results in blindness. The incidence is 14 per 100,000 and the condition affects 3-11% of blind children.
Congenital generalized lipodystrophy (CGL) is a rare autosomal recessive disorder which manifests with insulin resistance, absence of subcutaneous fat and muscular hypertrophy. Homozygous or compound heterozygous mutations in four genes are associated with the four subtypes of CGL. The condition appears in early childhood with accelerated linear growth, quick aging of bones, and a large appetite. As the child grows up, acanthosis nigricans (hyperpigmentation and thickening of skin) will begin to present itself throughout the body – mainly in the neck, trunk, and groin. The disorder also has characteristic features like hepatomegaly or an enlarged liver which arises from fatty liver and may lead to cirrhosis, muscle hypertrophy, lack of adipose tissue, splenomegaly, hirsutism (excessive hairiness) and hypertriglyceridemia. Fatty liver and muscle hypertrophy arise from the fact that lipids are instead stored in these areas; whereas in a healthy individual, lipids are distributed more uniformly throughout the body subcutaneously. The absence of adipose tissue where they normally occur causes the body to store fat in the remaining areas. Common cardiovascular problems related to this syndrome are cardiac hypertrophy and arterial hypertension (high blood pressure). This disorder can also cause metabolic syndrome. Most with the disorder also have a prominent umbilicus or umbilical hernia. Commonly, patients will also have acromegaly with enlargement of the hands, feet, and jaw. After puberty, additional symptoms can develop. In women, clitoromegaly and polycystic ovary syndrome can develop. This impairs fertility for women, and only a few documented cases of successful pregnancies in women with CGL exist. However, the fertility of men with the disorder is unaffected.
Microphthalmia (Greek: μικρός "micros" = small; ὀφθαλμός "ophthalmos" = eye), also referred as microphthalmos, is a developmental disorder of the eye in which one (unilateral microphthalmia) or both (bilateral microphthalmia) eyes are abnormally small and have anatomic malformations. It is different from nanophthalmos in which the eye is small in size but has no anatomical alterations.
Congenital generalized lipodystrophy (also known as Berardinelli–Seip syndrome) is an extremely rare autosomal recessive skin condition, characterized by an extreme scarcity of fat in the subcutaneous tissues. It is a type of lipodystophy disorder where the magnitude of fat loss determines the severity of metabolic complications. Only 250 cases of the condition have been reported, and it is estimated that it occurs in 1 in 10 million people worldwide.
Horses with Type 1 PSSM usually appear normal at rest, but show signs of exertional rhabdomyolysis ("tying up") such as shortened stride, stiffness, firm musculature, sweating, pain or reluctance to exercise, when asked to perform light work. While episodes of exertional rhabdomyolysis is one of the most frequent signs associated with affected horses (reported in ~37% of affected animals), other common signs include gait abnormalities, shifting lameness, muscle weakness that may result in an inability to rise, colic-like pain, and muscle fasciculation, atrophy, and/or stiffness (most commonly seen in the semimembranosis, semitendinosis, and longissimus muscles).
These clinical signs usually first become apparent when the horse is placed into training as a young animal; however, affected horses will show histological changes consistent with muscle damage at one month of age, and may also show elevations in creatine kinase (CK), an enzyme that elevates with muscle damage. Concurrent illness, such as respiratory or gastrointestinal infection, can lead to elevations in CK and potentially life-threatening rhabdomyolysis, even without exercise. Horses with PSSM often have a persistently elevated CK at rest, which differentiates the disease from recurrent exertional rhabdomyolysis, in which horses have normal CK concentrations between episodes.
Phakomatosis pigmentovascularis is subdivided into five types:
- Type 1 PWS + epidermal nevus
- Type 2 (most common): PWS + dermal melanocytosis +/- nevus anemicus
- Type 3: PWS + nevus spilus +/- nevus anemicus
- Type 4: PWS + nevus spilus + dermal melanocytosis +/- nevus anemicus
- Type 5: CMTC (Cutis marmorata telangiectatica congenita) + dermal melanocytosis
They all can contain capillary malformation. Type 2 is the most common and can be associated with granular cell tumor. Some further subdivide each type into categories A & B; with A representing oculocutaneous involvement and subtype B representing extra oculocutaneous involvement. Others have proposed fewer subtypes but currently this rare entity is mostly taught as having five subtypes currently.