Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The first symptoms of Guillain–Barré syndrome are numbness, tingling, and pain, alone or in combination. This is followed by weakness of the legs and arms that affects both sides equally and worsens over time. The weakness can take half a day to over two weeks to reach maximum severity, and then becomes steady. In one in five people, the weakness continues to progress for as long as four weeks. The muscles of the neck may also be affected, and about half experience involvement of the cranial nerves which supply the head and face; this may lead to weakness of the muscles of the face, swallowing difficulties and sometimes weakness of the eye muscles. In 8%, the weakness affects only the legs (paraplegia or paraparesis). Involvement of the muscles that control the bladder and anus is unusual. In total, about a third of people with Guillain–Barré syndrome continue to be able to walk. Once the weakness has stopped progressing, it persists at a stable level ("plateau phase") before improvement occurs. The plateau phase can take between two days and six months, but the most common duration is a week. Pain-related symptoms affect more than half, and include back pain, painful tingling, muscle pain and pain in the head and neck relating to irritation of the lining of the brain.
Many people with Guillain–Barré syndrome have experienced the signs and symptoms of an infection in the 3–6 weeks prior to the onset of the neurological symptoms. This may consist of upper respiratory tract infection (rhinitis, sore throat) or diarrhea.
In children, particularly those younger than six years old, the diagnosis can be difficult and the condition is often initially mistaken (sometimes for up to two weeks) for other causes of pains and difficulty walking, such as viral infections, or bone and joint problems.
On neurological examination, characteristic features are the reduced power and reduced or absent tendon reflexes (hypo- or areflexia, respectively). However, a small proportion has normal reflexes in affected limbs before developing areflexia, and some may have exaggerated reflexes. In the "Miller Fisher variant" subtype of Guillain–Barré syndrome (see below), a triad of weakness of the eye muscles, abnormalities in coordination, as well as absent reflexes can be found. The level of consciousness is normally unaffected in Guillain–Barré syndrome, but the Bickerstaff brainstem encephalitis subtype may feature drowsiness, sleepiness, or coma.
A quarter of all people with Guillain–Barré syndrome develop weakness of the breathing muscles leading to respiratory failure, the inability to breathe adequately to maintain healthy levels of oxygen and/or carbon dioxide in the blood. This life-threatening scenario is complicated by other medical problems such as pneumonia, severe infections, blood clots in the lungs and bleeding in the digestive tract in 60% of those who require artificial ventilation.
The syndrome typically presents as a progressive flaccid symmetric paralysis with areflexia, often causing respiratory failure. Electromyographic studies and nerve conduction studies show normal motor conduction velocity and latency with decreased amplitude of compound muscle action potentials. F wave and sensory nerve action potentials are often normal in this illness. Pathologically, it is a noninflammatory axonopathy without demyelination. Antibodies attack the coating of the motor neurons without causing inflammation or loss of myelin. It does not affect sensory neurons, so sensation remains intact despite loss of movement.
Acute motor axonal neuropathy (AMAN) is a variant of Guillain–Barré syndrome. It is characterized by acute paralysis and loss of reflexes without sensory loss. Pathologically, there is motor axonal degeneration with antibody-mediated attacks of motor nerves and nodes of Ranvier.
In order to diagnose Bickerstaff brainstem encephalitis, ataxia and ophthalmoplegia must be present. These are also diagnostic features of Miller Fisher syndrome, and so Bickerstaff's is only diagnosed if other features are present which exclude Miller Fisher syndrome. These may include drowsiness, coma or hyperreflexia. When the condition is defined in this way, a number of other features are commonly but not always found: among these are weakness of the limbs, the face, and/or the bulbar muscles; abnormalities of the pupils; and absent reflexes.
Like some other autoimmune diseases, the condition usually follows a minor infection, such as a respiratory tract infection or gastroenteritis.
Bickerstaff brainstem encephalitis is a rare inflammatory disorder of the central nervous system, first described by Edwin Bickerstaff in 1951. It may also affect the peripheral nervous system, and has features in common with both Miller Fisher syndrome and Guillain–Barré syndrome.
Neuritis is a general term for inflammation of a nerve or the general inflammation of the peripheral nervous system. Symptoms depend on the nerves involved, but may include pain, paresthesia (pins-and-needles), paresis (weakness), hypoesthesia (numbness), anesthesia, paralysis, wasting, and disappearance of the reflexes.
Causes of neuritis include:
Those with diseases or dysfunctions of their nerves may present with problems in any of the normal nerve functions. Symptoms vary depending on the types of nerve fiber involved.In terms of sensory function, symptoms commonly include loss of function ("negative") symptoms, including , tremor, impairment of balance, and gait abnormality. Gain of function (positive) symptoms include tingling, pain, itching, crawling, and pins-and-needles.
Motor symptoms include loss of function ("negative") symptoms of weakness, tiredness, muscle atrophy, and gait abnormalities; and gain of function ("positive") symptoms of cramps, and muscle twitch (fasciculations).
In the most common form, length-dependent peripheral neuropathy, pain and parasthesia appears symmetrically and generally at the terminals of the longest nerves, which are in the lower legs and feet. Sensory symptoms generally develop before motor symptoms such as weakness. Length-dependent peripheral neuropathy symptoms make a slow ascent of leg, while symptoms may never appear in the upper limbs; if they do, it will be around the time that leg symptoms reach the knee. When the nerves of the autonomic nervous system are affected, symptoms may include constipation, dry mouth, difficulty urinating, and dizziness when standing.
Magnetic resonance imaging (MRI) is the imaging of choice in spinal cord lesions.
Brown-Séquard syndrome is an incomplete spinal cord lesion characterized by findings on clinical examination which reflect hemisection of the spinal cord (cutting the spinal cord in half on one or the other side). It is diagnosed by finding motor (muscle) paralysis on the same (ipsilateral) side as the lesion and deficits in pain and temperature sensation on the opposite (contralateral) side. This is called ipsilateral hemiplegia and contralateral pain and temperature sensation deficits. The loss of sensation on the opposite side of the lesion is because the nerve fibers of the spinothalamic tract (which carry information about pain and temperature) crossover once they meet the spinal cord from the peripheries.
Polyneuropathy ( + + ) is damage or disease affecting peripheral nerves (peripheral neuropathy) in roughly the same areas on both sides of the body, featuring weakness, numbness, and burning pain. It usually begins in the hands and feet and may progress to the arms and legs; and sometimes to other parts of the body where it may affect the autonomic nervous system. It may be acute or chronic. A number of different disorders may cause polyneuropathy, including diabetes and some types of Guillain–Barré syndrome.
Among the signs/symptoms of polyneuropathy, which can be divided (into sensory and hereditary) and are consistent with the following:
- "Sensory polyneuropathy" - ataxia, numbness, muscle wasting and paraesthesiae.
- "Hereditary polyneuropathy" - scoliosis and hammer toes
Any presentation of spinal injury that is an incomplete lesion (hemisection) can be called a partial Brown-Séquard or incomplete Brown-Séquard syndrome.
Brown-Séquard syndrome is characterized by loss of motor function (i.e. hemiparaplegia), loss of vibration sense and fine touch, loss of proprioception (position sense), loss of two-point discrimination, and signs of weakness on the ipsilateral (same side) of the spinal injury. This is a result of a lesion affecting the dorsal column-medial lemniscus tract, which carries fine (or light) touch fibers, conscious proprioception, vibration, pressure and 2-point discrimination, and the corticospinal tract, which carries motor fibers. On the contralateral (opposite side) of the lesion, there will be a loss of pain and temperature sensation and crude touch 1 or 2 segments below the level of the lesion via the Spinothalamic Tract of the Anterolateral System. Bilateral (both sides) ataxia may also occur if the ventral spinocerebellar tract and dorsal spinocerebellar tract are affected.
Usually beginning in one or both hands, MMN is characterized by weakness, muscle atrophy, cramping, and often profuse fasciculations (muscle twitching). The symptoms are progressive over long periods, often in a stepwise fashion, but unlike ALS are often treatable.
Sensory nerves are usually unaffected.
Wrist drop and foot drop (leading to trips and falls) are common symptoms. Other effects can include gradual loss of finger extension, leading to a clawlike appearance. Cold & hot temperatures exacerbates MMN symptoms to such an extent, unlike other neuropathies, that it is being investigated as a diagnostic tool.
Multifocal motor neuropathy (MMN) is a progressively worsening condition where muscles in the extremities gradually weaken. The disorder, a pure motor neuropathy syndrome, is sometimes mistaken for amyotrophic lateral sclerosis (ALS) because of the similarity in the clinical picture, especially if muscle fasciculations are present. MMN is thought to be autoimmune. It was first described in the mid-1980s.
Unlike ALS which affects both upper and lower motor nerves, MMN involves only lower motor nerves. Nevertheless, definitive diagnosis is often difficult, and many MMN patients labor for months or years under an ALS diagnosis before finally getting a determination of MMN.
MMN usually involves very little pain however muscle cramps, spasms and twitches can cause pain for some sufferers. MMN is not fatal, and does not diminish life expectation. Many patients, once undergoing treatment, only experience mild symptoms over prolonged periods, though the condition remains slowly progressive. MMN can however, lead to significant disability, with loss of function in hands affecting ability to work and perform everyday tasks, and "foot drop" leading to inability to stand and walk; some patients end up using aids like canes, splints and walkers.
There are several types of immune-mediated neuropathies recognised. These include
- Chronic inflammatory demyelinating polyneuropathy (CIPD) with subtypes:
- Classical CIDP
- CIDP with diabetes
- CIDP/monoclonal gammopathy of undetermined significance
- Sensory CIDP
- Multifocal motor neuropathy
- Multifocal acquired demyelinating sensory and motor neuropathy (Lewis-Sumner syndrome)
- Multifocal acquired sensory and motor neuropathy
- Distal acquired demyelinating sensory neuropathy
- Guillain-Barre syndrome with subtypes:
- Acute inflammatory demyelinating polyradiculoneuropathy
- Acute motor axonal neuropathy
- Acute motor and sensory axonal neuropathy
- Acute pandysautonomia
- Miller Fisher syndrome
- IgM monoclonal gammopathies with subtypes:
- Waldenstrom's macroglobulinemia
- Mixed cryoglobulinemia, gait ataxia, late-onset polyneuropathy syndrome
- Myelin-associated glycoprotein-associated gammopathy, polyneuropathy, organomegaly, endocrinopathy, M-protein and skin changes syndrome (POEMS)
For this reason a diagnosis of chronic inflammatory demyelinating polyneuropathy needs further investigations.
The diagnosis is usually provisionally made through a clinical neurological examination. Patients usually present with a history of weakness, numbness, tingling, pain and difficulty in walking. They may additionally present with fainting spells while standing up or burning pain in extremities. Some patients may have sudden onset of back pain or neck pain radiating down the extremities, usually diagnosed as radicular pain. These symptoms are usually progressive and may be intermittent.
Autonomic system dysfunction can occur; in such a case, the patient would complain of orthostatic dizziness, problems breathing, eye, bowel, bladder and cardiac problems. The patient may also present with a single cranial nerve or peripheral nerve dysfunction.
On examination the patients may have weakness, and loss of deep tendon reflexes (rarely increased or normal). There may be atrophy (shrinkage) of muscles, fasciculations (twitching) and loss of sensation. Patients may have multi-focal motor neuropathy, as they have no sensory loss.
Most experts consider the necessary duration of symptoms to be greater than 8 weeks for the diagnosis of CIDP to be made.
Typical diagnostic tests include:
- Electrodiagnostics – electromyography (EMG) and nerve conduction study (NCS). In usual CIDP, the nerve conduction studies show demyelination. These findings include:
1. a reduction in nerve conduction velocities;
2. the presence of conduction block or abnormal temporal dispersion in at least one motor nerve;
3. prolonged distal latencies in at least two nerves;
4. absent F waves or prolonged minimum F wave latencies in at least two motor nerves. (In some case EMG/NCV can be normal).
- Serum test to exclude other autoimmune diseases.
- Lumbar puncture and serum test for anti-ganglioside antibodies. These antibodies are present in the branch of CIDP diseases comprised by anti-GM1, anti-GD1a, and anti-GQ1b.
- Sural nerve biopsy; biopsy is considered for those patients in whom the diagnosis is not completely clear, when other causes of neuropathy (e.g., hereditary, vasculitic) cannot be excluded, or when profound axonal involvement is observed on EMG.
- Ultrasound of the periferal nerves may show swelling of the affected nerves
- MRI can also be used in the diagnosic workup
In some cases electrophysiological studies fail to show any evidence of demyelination. Though conventional electrophysiological diagnostic criteria are not met, the patient may still respond to immunomodulatory treatments. In such cases, presence of clinical characteristics suggestive of CIDP are critical, justifying full investigations, including sural nerve biopsy.
Most patients experience poorly localised pain in the forearm. The pain is sometimes referred into the cubital fossa and elbow pain has been reported as being a primary complaint.
The characteristic impairment of the pincer movement of the thumb and index finger is most striking.
In a pure lesion of the anterior interosseous nerve there may be weakness of the long flexor muscle of the thumb (Flexor pollicis longus), the deep flexor muscles of the index and middle fingers (Flexor digitorum profundus I & II), and the pronator quadratus muscle.
There is little sensory deficit since the anterior interosseous nerve has no cutaneous branch.
Chronic inflammatory demyelinating polyneuropathy (CIDP) is an acquired immune-mediated inflammatory disorder of the peripheral nervous system. The disorder is sometimes called chronic relapsing polyneuropathy (CRP) or chronic inflammatory demyelinating polyradiculoneuropathy (because it involves the nerve roots). CIDP is closely related to Guillain–Barré syndrome and it is considered the chronic counterpart of that acute disease. Its symptoms are also similar to progressive inflammatory neuropathy. An asymmetrical variant of CIDP is known as Lewis-Sumner Syndrome.
People with hemiparesis often have difficulties maintaining their balance due to limb weaknesses leading to an inability to properly shift body weight. This makes performing everyday activities such as dressing, eating, grabbing objects, or using the bathroom more difficult. Hemiparesis with origin in the lower section of the brain creates a condition known as ataxia, a loss of both gross and fine motor skills, often manifesting as staggering and stumbling. Pure Motor Hemiparesis, a form of hemiparesis characterized by sided weakness in the leg, arm, and face, is the most commonly diagnosed form of hemiparesis.
Depending on the type of hemiparesis diagnosed, different bodily functions can be affected. Some effects are expected (e.g., partial paralysis of a limb on the affected side). Other impairments, though, can at first seem completely non-related to the limb weakness but are, in fact, a direct result of the damage to the affected side of the brain.
Over 40 laboratory tests were initially conducted to rule out various pathogens and environmental toxins. These tests were used to try to identify potential viruses carried by humans, pigs, or both, including rotoviruses, adenoviruses, hepatitis A, and hepatitis E. They also tried to identify bacteria such as salmonella and escherichia coli (e. coli), and parasites such as Giardia and cryptosporidium that could be causing the symptoms. All were ruled out.
Neurodegenerative diseases were considered specifically because of the similarity of symptoms and animal involvement thus included investigation of prion associated diseases such as bovine spongiform encephalopathy (BSE), chronic wasting disease (CWD), and variant Creutzfeldt–Jakob disease (vCJD). These all have highly transmissible pathogenic agents that induce brain damage. Since no pathogenic agent had been found, these diseases were ruled out as being related.
Next two very similar neuropathies were ruled out. Guillain–Barré syndrome (GBS) induces an acute autoimmune response which affects the Schwann cells in the peripheral nervous system. GBS is usually triggered by an infection that causes weakness and tingling that may lead to muscle loss. This condition may be life-threatening if muscle atrophy ascends to affect the pulmonary or cardiac systems. So far, no infectious agents have been found that relate to the current disease, progressive infammatory neuropathy. They looked at chronic inflammatory demyelinating polyneuropathy (CIDP) which is characterized by progressive weakness and sensory impairment in the arms and legs. Damage occurs to the myelin sheath in the peripheral nervous system. As doctors at the Mayo Clinic were beginning to note, the problem they were seeing in progressive inflammatory neuropathy was occurring in the spinal nerve roots.
Todd's paresis, Todd's paralysis, or Todd's palsy (or postictal paresis/paralysis, "after seizure") is focal weakness in a part of the body after a seizure. This weakness typically affects appendages and is localized to either the left or right side of the body. It usually subsides completely within 48 hours. Todd's paresis may also affect speech, eye position (gaze), or vision.
The condition is named after Robert Bentley Todd (1809–1860), an Irish-born London physiologist who first described the phenomenon in 1849. It may occur in up to 13% of seizure cases. It is most common after a focal motor seizure affecting one limb or one side of the body. The generally postulated cause is the exhaustion of the primary motor cortex, although no conclusive evidence is available to support this.
The classic presentation of Todd's paresis is a transient weakness of a hand, arm, or leg after focal seizure activity within that limb. The weakness may range in severity from mild to complete paralysis.
When seizures affect areas other than the motor cortex, other transient neurological deficits can take place. These include sensory changes if the sensory cortex is involved by the seizure, visual field defects if the occipital lobe is involved, and aphasia if speech, comprehension or conducting fibers are involved.
Postictal paresis (PP), although familiar to neurologists, has not been well-studied. One retrospective observational study evaluated 328 selected patients from ages 16 to 57 years who had prolonged video-electroencephalogram (EEG) monitoring for medically intractable epilepsy and focal seizure onset; those with nonepileptic seizures, status epilepticus, and Lennox-Gastaut syndrome were excluded. The following observations were made:
- PP occurred in 44 patients (13.4 percent)
- PP was always unilateral and always contralateral to the seizure focus
- The mean duration of PP was 174 seconds (range 11 seconds to 22 minutes)
Of all seizures followed by PP, the following features were noted:
- Obvious ictal motor activity was seen in 78 percent (Todd's paresis is more common after any clonic seizure activity)
- Very slight ictal motor activity was seen in 10 percent
- No ictal motor activity was seen in nearly 10 percent
- The most common ictal lateralizing sign was unilateral clonic activity in 56 percent
- Ictal dystonic posturing occurred in 48 percent
- Ictal limb immobility occurred in 25 percent
The results of this study are valuable because few other data exist on the frequency, duration, and seizure characteristics associated with PP. However, the study is likely biased by the inclusion only of patients with medically intractable seizures who had undergone video-EEG monitoring, and the results may not extrapolate to a general epilepsy population.
Other post-ictal neurological findings that do not involve activity of the area affected by the seizure have been described. They are thought to be caused by a different mechanism than Todd's paresis, and including paralysis of the contralateral limb, and rare genetic causes of hemiplegia and seizures.
In an individual with dHMN V, electromyography will show pure motor neuropathy, patterns of weakness without upper motor neuron damage, in the hands. Tendon reflexes will also appear normal. Clinical, electrophysiological, and pathological testing will show a lack of damage to sensory neurons, differentiating this disease from CMT.
Onset usually occurs within the first two decades of life, commonly in the teenage years or the twenties. Life expectancy is normal. High arch of the foot (pes cavus) is common. Patients also have trouble controlling their hands, due to muscle loss on the thumb side of the index finger and palm below the thumb. It is rare for a person with this disorder to lose the ability to walk, though changes in gait may occur later in life.
Frequency of this disorder is unknown.