Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Acute kidney injuries can be present on top of chronic kidney disease, a condition called acute-on-chronic kidney failure (AoCRF). The acute part of AoCRF may be reversible, and the goal of treatment, as with AKI, is to return the patient to baseline kidney function, typically measured by serum creatinine. Like AKI, AoCRF can be difficult to distinguish from chronic kidney disease if the patient has not been monitored by a physician and no baseline (i.e., past) blood work is available for comparison.
The clinical picture is often dominated by the underlying cause.The symptoms of acute kidney injury result from the various disturbances of kidney function that are associated with the disease. Accumulation of urea and other nitrogen-containing substances in the bloodstream lead to a number of symptoms, such as fatigue, loss of appetite, headache, nausea and vomiting. Marked increases in the potassium level can lead to abnormal heart rhythms, which can be severe and life-threatening. Fluid balance is frequently affected, though blood pressure can be high, low or normal.
Pain in the flanks may be encountered in some conditions (such as clotting of the kidneys' blood vessels or inflammation of the kidney); this is the result of stretching of the fibrous tissue capsule surrounding the kidney. If the kidney injury is the result of dehydration, there may be thirst as well as evidence of fluid depletion on physical examination. Physical examination may also provide other clues as to the underlying cause of the kidney problem, such as a rash in interstitial nephritis (or vasculitis) and a palpable bladder in obstructive nephropathy.
Symptoms can vary from person to person. Someone in early stage kidney disease may not feel sick or notice symptoms as they occur. When kidneys fail to filter properly, waste accumulates in the blood and the body, a condition called azotemia. Very low levels of azotaemia may produce few, if any, symptoms. If the disease progresses, symptoms become noticeable (if the failure is of sufficient degree to cause symptoms). Kidney failure accompanied by noticeable symptoms is termed uraemia.
Symptoms of kidney failure include the following:
- High levels of urea in the blood, which can result in:
- Vomiting or diarrhea (or both) which may lead to dehydration
- Nausea
- Weight loss
- Nocturnal urination
- More frequent urination, or in greater amounts than usual, with pale urine
- Less frequent urination, or in smaller amounts than usual, with dark coloured urine
- Blood in the urine
- Pressure, or difficulty urinating
- Unusual amounts of urination, usually in large quantities
- A buildup of phosphates in the blood that diseased kidneys cannot filter out may cause:
- Itching
- Bone damage
- Nonunion in broken bones
- Muscle cramps (caused by low levels of calcium which can be associated with hyperphosphatemia)
- A buildup of potassium in the blood that diseased kidneys cannot filter out (called hyperkalemia) may cause:
- Abnormal heart rhythms
- Muscle paralysis
- Failure of kidneys to remove excess fluid may cause:
- Swelling of the legs, ankles, feet, face, or hands
- Shortness of breath due to extra fluid on the lungs (may also be caused by anemia)
- Polycystic kidney disease, which causes large, fluid-filled cysts on the kidneys and sometimes the liver, can cause:
- Pain in the back or side
- Healthy kidneys produce the hormone erythropoietin that stimulates the bone marrow to make oxygen-carrying red blood cells. As the kidneys fail, they produce less erythropoietin, resulting in decreased production of red blood cells to replace the natural breakdown of old red blood cells. As a result, the blood carries less hemoglobin, a condition known as anemia. This can result in:
- Feeling tired or weak
- Memory problems
- Difficulty concentrating
- Dizziness
- Low blood pressure
- Normally, proteins are too large to pass through the kidneys, however, they are able to pass through when the glomeruli are damaged. This does not cause symptoms until extensive kidney damage has occurred, after which symptoms include:
- Foamy or bubbly urine
- Swelling in the hands, feet, abdomen, or face
- Other symptoms include:
- Appetite loss, a bad taste in the mouth
- Difficulty sleeping
- Darkening of the skin
- Excess protein in the blood
- With high doses of penicillin, people with kidney failure may experience seizures
Acute kidney injury is diagnosed on the basis of clinical history and laboratory data. A diagnosis is made when there is a rapid reduction in kidney function, as measured by serum creatinine, or based on a rapid reduction in urine output, termed oliguria (less than 400 mLs of urine per 24 hours).
AKI can be caused by systemic disease (such as a manifestation of an autoimmune disease, e.g. lupus nephritis), crush injury, contrast agents, some antibiotics, and more. AKI often occurs due to multiple processes. The most common cause is dehydration and sepsis combined with nephrotoxic drugs, especially following surgery or contrast agents.
The causes of acute kidney injury are commonly categorized into "prerenal", "intrinsic", and "postrenal".
Acute uric acid nephropathy is caused by deposition of uric acid crystals within the kidney interstitium and tubules, leading to partial or complete obstruction of collecting ducts, renal pelvis, or ureter. This obstruction is usually bilateral, and patients follow the clinical course of acute renal failure.
Nephrotic syndrome is a collection of symptoms due to kidney damage. This includes protein in the urine, low blood albumin levels, high blood lipids, and significant swelling. Other symptoms may include weight gain, feeling tired, and foamy urine. Complications may include blood clots, infections, and high blood pressure.
Causes include a number of kidney diseases such as focal segmental glomerulosclerosis, membranous nephropathy, and minimal change disease. It may also occur as a complication of diabetes or lupus. The underlying mechanism typically involves damage to the glomeruli of the kidney. Diagnosis is typically based on urine testing and sometimes a kidney biopsy. It differs from nephritic syndrome in that there are no red blood cells in the urine.
Treatment is directed at the underlying cause. Other efforts include managing high blood pressure, high blood cholesterol, and infection risk. A low salt diet and limiting fluids is often recommended. About 5 per 100,000 people are affected per year. The usual underlying cause varies between children and adults.
The picture of acute renal failure is observed: decreased urine production and rapidly rising serum creatinine levels. Acute uric acid nephropathy is differentiated from other forms of acute renal failure by the finding of a urine uric acid/creatinine ratio > 1 in a random urine sample.
Acute tubular necrosis is classified as a "renal" (i.e. not pre-renal or post-renal) cause of acute kidney injury. Diagnosis is made by a FENa (fractional excretion of sodium) > 3% and presence of muddy casts (a type of granular cast) in urinalysis. On histopathology, there is usually "tubulorrhexis", that is, localized necrosis of the epithelial lining in renal tubules, with focal rupture or loss of basement membrane. Proximal tubule cells can shed with variable viability and not be purely "necrotic".
Acute tubular necrosis (ATN) is a medical condition involving the death of tubular epithelial cells that form the renal tubules of the kidneys. ATN presents with acute kidney injury (AKI) and is one of the most common causes of AKI. Common causes of ATN include low blood pressure and use of nephrotoxic drugs. The presence of "muddy brown casts" of epithelial cells found in the urine during urinalysis is pathognomonic for ATN. Management relies on aggressive treatment of the factors that precipitated ATN (e.g. hydration and cessation of the offending drug). Because the tubular cells continually replace themselves, the overall prognosis for ATN is quite good if the cause is corrected, and recovery is likely within 7 to 21 days.
Chronic kidney disease (CKD) is a type of kidney disease in which there is gradual loss of kidney function over a period of months or years. Early on there are typically no symptoms. Later, leg swelling, feeling tired, vomiting, loss of appetite, or confusion may develop. Complications may include heart disease, high blood pressure, bone disease, or anemia.
Causes of chronic kidney disease include diabetes, high blood pressure, glomerulonephritis, and polycystic kidney disease. Risk factors include a family history of the condition. Diagnosis is generally by blood tests to measure the glomerular filtration rate and urine tests to measure albumin. Further tests such as an ultrasound or kidney biopsy may be done to determine the underlying cause. A number of different classification systems exist.
Screening at-risk people is recommended. Initial treatments may include medications to manage blood pressure, blood sugar, and lower cholesterol. NSAIDs should be avoided. Other recommended measures include staying active and certain dietary changes. Severe disease may require hemodialysis, peritoneal dialysis, or a kidney transplant. Treatments for anemia and bone disease may also be required.
Chronic kidney disease affected about 323 million people globally in 2015. In 2015 it resulted in 1.2 million deaths, up from 409,000 in 1990. The causes that contribute to the greatest number of deaths are high blood pressure at 550,000, followed by diabetes at 418,000, and glomerulonephritis at 238,000.
Kidney disease, also known as nephropathy or renal disease, is damage to or disease of a kidney. Nephritis is inflammatory kidney disease. Nephrosis is noninflammatory kidney disease. Kidney disease usually causes kidney failure to some degree, with the amount depending on the type of disease. In precise usage, "disease" denotes the structural and causal disease entity whereas "failure" denotes the impaired kidney function. In common usage these meanings overlap; for example, the terms "chronic kidney disease" and "chronic renal failure" are usually considered synonymous. Acute kidney disease has often been called acute renal failure, although nephrologists now often tend to call it acute kidney injury. About 1 in 8 Americans suffer from chronic kidney disease.
CKD is initially without specific symptoms and is generally only detected as an increase in serum creatinine or protein in the urine. As the kidney function decreases:
- Blood pressure is increased due to fluid overload and production of vasoactive hormones created by the kidney via the renin-angiotensin system, increasing one's risk of developing hypertension and/or suffering from congestive heart failure.
- Urea accumulates, leading to azotemia and ultimately uremia (symptoms ranging from lethargy to pericarditis and encephalopathy). Due to its high systemic circulation, urea is excreted in eccrine sweat at high concentrations and crystallizes on skin as the sweat evaporates ("uremic frost").
- Potassium accumulates in the blood (hyperkalemia with a range of symptoms including malaise and potentially fatal cardiac arrhythmias). Hyperkalemia usually does not develop until the glomerular filtration rate falls to less than 20–25 ml/min/1.73 m, at which point the kidneys have decreased ability to excrete potassium. Hyperkalemia in CKD can be exacerbated by acidemia (which leads to extracellular shift of potassium) and from lack of insulin.
- Erythropoietin synthesis is decreased causing anemia.
- Fluid volume overload symptoms may range from mild edema to life-threatening pulmonary edema.
- Hyperphosphatemia, due to reduced phosphate excretion, follows the decrease in glomerular filtration. Hyperphosphatemia is associated with increased cardiovascular risk, being a direct stimulus to vascular calcification. Moreover, circulating concentrations of fibroblast growth factor-23 (FGF-23) increase progressively as the renal capacity for phosphate excretion declines, but this adaptative response may also contribute to left ventricular hypertrophy and increased mortality in CKD patients.
- Hypocalcemia, due to 1,25 dihydroxyvitamin D deficiency (caused by stimulation of FGF-23 and reduction of renal mass), and resistance to the calcemic action of parathyroid hormone. Osteocytes are responsible for the increased production of FGF-23, which is a potent inhibitor of the enzyme 1-alpha-hydroxylase (responsible for the conversion of 25-hydroxycholecalciferol into 1,25 dihydroxyvitamin D). Later, this progresses to secondary hyperparathyroidism, renal osteodystrophy, and vascular calcification that further impairs cardiac function. An extreme consequence is the occurrence of the rare condition named calciphylaxis.
- The concept of chronic kidney disease-mineral bone disorder (CKD-MBD) currently describes a broader clinical syndrome that develops as a systemic disorder of mineral and bone metabolism due to CKD manifested by either "one or a combination" of: 1) abnormalities of calcium, phosphorus (phosphate), parathyroid hormone, or vitamin D metabolism; 2) abnormalities in bone turnover, mineralization, volume, linear growth, or strength (renal osteodystrophy); and 3) vascular or other soft-tissue calcification. CKD-MBD has been associated to poor hard outcomes.
- Metabolic acidosis (due to accumulation of sulfates, phosphates, uric acid etc.) may cause altered enzyme activity by excess acid acting on enzymes; and also increased excitability of cardiac and neuronal membranes by the promotion of hyperkalemia due to excess acid (acidemia). Acidosis is also due to decreased capacity to generate enough ammonia from the cells of the proximal tubule.
- Iron deficiency anemia, which increases in prevalence as kidney function decreases, is especially prevalent in those requiring haemodialysis. It is multifactoral in cause, but includes increased inflammation, reduction in erythropoietin, and hyperuricemia leading to bone marrow suppression.
People with CKD suffer from accelerated atherosclerosis and are more likely to develop cardiovascular disease than the general population. Patients afflicted with CKD and cardiovascular disease tend to have significantly worse prognoses than those suffering only from the latter.
Sexual dysfunction is very common in both men and women with CKD. A majority of men have a reduced sex drive, difficulty obtaining an erection, and reaching orgasm, and the problems get worse with age. A majority of women have trouble with sexual arousal, and painful menstruation and problems with performing and enjoying sex are common.
The prognosis for nephrotic syndrome under treatment is generally good although this depends on the underlying cause, the age of the patient and their response to treatment. It is usually good in children, because minimal change disease responds very well to steroids and does not cause chronic renal failure. Any relapses that occur become less frequent over time; the opposite occurs with mesangiocapillary glomerulonephritis, in which the kidney fails within three years of the disease developing, making dialysis necessary and subsequent kidney transplant. In addition children under the age of 5 generally have a poorer prognosis than prepubescents, as do adults older than 30 years of age as they have a greater risk of kidney failure.
Other causes such as focal segmental glomerulosclerosis frequently lead to end stage renal disease. Factors associated with a poorer prognosis in these cases include level of proteinuria, blood pressure control and kidney function (GFR).
Without treatment nephrotic syndrome has a very bad prognosis especially "rapidly progressing glomerulonephritis", which leads to acute kidney failure after a few months.
Causes of kidney disease include deposition of the IgA antibodies in the glomerulus, administration of analgesics, xanthine oxidase deficiency, toxicity of chemotherapy agents, and long-term exposure to lead or its salts. Chronic conditions that can produce nephropathy include systemic lupus erythematosus, diabetes mellitus and high blood pressure (hypertension), which lead to diabetic nephropathy and hypertensive nephropathy, respectively.
Blockage of urine flow in an area below the kidneys results in postrenal azotemia. It can be caused by congenital abnormalities such as vesicoureteral reflux, blockage of the ureters by kidney stones, pregnancy, compression of the ureters by cancer, prostatic hyperplasia, or blockage of the urethra by kidney or bladder stones. Like in prerenal azotemia, there is no inherent renal disease. The increased resistance to urine flow can cause back up into the kidneys, leading to hydronephrosis.
The BUN:Cr in postrenal azotemia is initially >15. The increased nephron tubular pressure (due to fluid back-up) causes increased reabsorption of urea, elevating it abnormally relative to creatinine. Persistent obstruction damages the tubular epithelium over time, and renal azotemia will result with a decreased BUN:Cr ratio.
Interstitial nephritis (or tubulo-interstitial nephritis) is a form of nephritis affecting the interstitium of the kidneys surrounding the tubules, i.e., is inflammation of the spaces between renal tubules. This disease can be either acute, meaning it occurs suddenly, or chronic, meaning it is ongoing and eventually ends in kidney failure.
A urinalysis will typically show a decreased urine sodium level, a high urine creatinine-to-serum creatinine ratio, a high urine urea-to-serum urea ratio, and concentrated urine (determined by osmolality and specific gravity). None of these is particularly useful in diagnosis.
In pre-renal and post-renal azotemias, elevation of the BUN exceeds that of the creatinine (i.e., BUN>12*creatinine). This is because BUN is readily absorbed while creatinine is not. In congestive heart failure (a cause of pre-renal azotemia) or any other condition that causes poor perfusion of kidneys, the sluggish flow of glomerular filtrate results in excessive absorption of BUN and elevation of its value in blood. Creatinine, however, is not absorbable and therefore does not rise significantly. Stasis of urine in post-renal azotemia has the same effect.
Though this condition is usually asymptomatic, if symptoms are present they are usually related to the causative process, (e.g. hypercalcemia). Some of the sympotoms that can happen are blood in the urine, fever and chills, nausea and vomiting, severe pain in the belly area, flanks of the back, groin, or testicles.
These include renal colic, polyuria and polydipsia:
- Renal colic is usually caused by pre-existing nephrolithiasis, as may occur in patients with chronic hypercalciuria. Less commonly, it can result from calcified bodies moving into the calyceal system.
- Nocturia, polyuria, and polydipsia from reduced urinary concentrating capacity (i.e. nephrogenic diabetes insipidus) as can be seen in hypercalcemia, medullary nephrocalcinosis of any cause, or in children with Bartter syndrome in whom essential tubular salt reabsorption is compromised.
There are several causes of nephrocalcinosis that are typically acute and present only with renal failure. These include tumor lysis syndrome, acute phosphate nephropathy, and occasional cases of enteric hyperoxaluria.
At times, there are no symptoms of this disease, but when they do occur they are widely varied and can occur rapidly or gradually. When caused by an allergic reaction, the symptoms of acute tubulointerstitial nephritis are fever (27% of patients), rash (15% of patients), and enlarged kidneys. Some people experience dysuria, and lower back pain. In chronic tubulointerstitial nephritis the patient can experience symptoms such as nausea, vomiting, fatigue, and weight loss. Other conditions that may develop include hyperkalemia, metabolic acidosis, and kidney failure.
Anuria, sometimes called anuresis, is nonpassage of urine, in practice is defined as passage of less than 100 milliliters of urine in a day. Anuria is often caused by failure in the function of kidneys. It may also occur because of some severe obstruction like kidney stones or tumours. It may occur with end stage renal disease. It is a more extreme reduction than oliguria (hypouresis), with 400 mL/day being the conventional (albeit slightly arbitrary) cutoff point between the two.
Both types of hepatorenal syndrome share three major components: altered liver function, abnormalities in circulation, and kidney failure. As these phenomena may not necessarily produce symptoms until late in their course, individuals with hepatorenal syndrome are typically diagnosed with the condition on the basis of altered laboratory tests. Most people who develop HRS have cirrhosis, and may have signs and symptoms of the same, which can include jaundice, altered mental status, evidence of decreased nutrition, and the presence of ascites. Specifically, the production of ascites that is resistant to the use of diuretic medications is characteristic of type 2 HRS. Oliguria, which is a decrease in urine volume, may occur as a consequence of kidney failure; however, some individuals with HRS continue to produce a normal amount of urine. As these signs and symptoms may not necessarily occur in HRS, they are not included in the major and minor criteria for making a diagnosis of this condition; instead HRS is diagnosed in an individual at risk for the condition on the basis of the results of laboratory tests, and the exclusion of other causes.
Renal cortical necrosis (RCN) is a rare cause of acute kidney failure. The condition is "usually caused by significantly diminished arterial perfusion of the kidneys due to spasms of the feeding arteries, microvascular injury, or disseminated intravascular coagulation" and is the pathological progression of acute tubular necrosis. It is frequently associated with obstetric catastrophes such as abruptio placentae and septic shock, and is three times more common in developing nations versus industrialized nations (2% versus 6% in causes of acute kidney failure).
Classical signs of uremia are: progressive weakness and easy fatigue, loss of appetite due to nausea and vomiting, muscle atrophy, tremors, abnormal mental function, frequent shallow respiration and metabolic acidosis. Without intervention via dialysis or kidney transplant, uremia due to renal failure will progress and cause stupor, coma and death. Because uremia is mostly a consequence of kidney failure, its signs and symptoms often occur concomitantly with other signs and symptoms of kidney failure. Below is a table showing more of the principal signs and symptoms of uremia.
Glomerular filtration rate (GFR) measures the amount of plasma being filtered through the kidneys. As the GFR decreases, the prognosis worsens. Some of the effects can be reversed with dialysis. See below for a chart on GFR rates and their effects.
Hepatorenal syndrome usually affects individuals with cirrhosis and elevated pressures in the portal vein system (termed portal hypertension). While HRS may develop in any type of cirrhosis, it is most common in individuals with alcoholic cirrhosis, particularly if there is concomitant alcoholic hepatitis identifiable on liver biopsies. HRS can also occur in individuals without cirrhosis, but with acute onset of liver failure, termed fulminant liver failure.
Certain precipitants of HRS have been identified in vulnerable individuals with cirrhosis or fulminant liver failure. These include bacterial infection, acute alcoholic hepatitis, or bleeding in the upper gastrointestinal tract. Spontaneous bacterial peritonitis, which is the infection of ascites fluid, is the most common precipitant of HRS in cirrhotic individuals. HRS can sometimes be triggered by treatments for complications of liver disease: iatrogenic precipitants of HRS include the aggressive use of diuretic medications or the removal of large volumes of ascitic fluid by paracentesis from the abdominal cavity without compensating for fluid losses by intravenous replacement.
Nephrocalcinosis, once known as Albright's calcinosis after Fuller Albright, or Anderson-Carr kidneys, is a term originally used to describe deposition of calcium salts in the renal parenchyma due to hyperparathyroidism. The term nephrocalcinosis is used to describe the deposition of both calcium oxalate and calcium phosphate. It may cause acute kidney injury. It is now more commonly used to describe diffuse, fine, renal parenchymal calcification on radiology. It is caused by multiple different conditions and is determined progressive kidney dysfunction. These outlines eventually come together to form a dense mass. During its early stages, nephrocalcinosis is visible on x-ray, and appears as a fine granular mottling over the renal outlines. It is most commonly seen as an incidental finding with medullary sponge kidney on an abdominal x-ray.
However, it may be severe enough to cause (as well as be caused by) renal tubular acidosis or even end stage renal failure, due to disruption of the renal tissue by the deposited calcium.