Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Frontal lobe epilepsy, usually a symptomatic or cryptogenic localization-related epilepsy, arises from lesions causing seizures that occur in the frontal lobes of the brain. These epilepsies can be difficult to diagnose because the symptoms of seizures can easily be confused with nonepileptic spells and, because of limitations of the EEG, be difficult to "see" with standard scalp EEG.
Juvenile absence epilepsy is an idiopathic generalized epilepsy with later onset than CAE, typically in prepubertal adolescence, with the most frequent seizure type being absence seizures. Generalized tonic-clonic seizures can occur. Often, 3 Hz spike-wave or multiple spike discharges can be seen on EEG. The prognosis is mixed, with some patients going on to a syndrome that is poorly distinguishable from JME.
Benign occipital epilepsy of childhood (BOEC) is an idiopathic localization-related epilepsy and consists of an evolving group of syndromes. Most authorities include two subtypes, an early subtype with onset between three and five years, and a late onset between seven and 10 years. Seizures in BOEC usually feature visual symptoms such as scotoma or fortifications (brightly colored spots or lines) or amaurosis (blindness or impairment of vision). Convulsions involving one half the body, hemiconvulsions, or forced eye deviation or head turning are common. Younger patients typically experience symptoms similar to migraine with nausea and headache, and older patients typically complain of more visual symptoms. The EEG in BOEC shows spikes recorded from the occipital (back of head) regions. The EEG and genetic pattern suggest an autosomal dominant transmission as described by Ruben Kuzniecky, et al. Lately, a group of epilepsies termed Panayiotopoulos syndrome that share some clinical features of BOEC but have a wider variety of EEG findings are classified by some as BOEC.
The age of onset of seizures is typically between three and five, though onset can occur at an earlier or later age. The syndrome shows clear parallels to West syndrome, enough to suggest a connection.
Daily multiple seizures are typical in LGS. Also typical is the broad range of seizures that can occur, larger than that of any other epileptic syndrome. The most frequently occurring seizure type is tonic seizures, which are often nocturnal (90%); the second most frequent are myoclonic seizures, which often occur when the person is over-tired.
Atonic, atypical absence, tonic, complex partial, focalized and tonic–clonic seizures are also common. Additionally, about half of patients will have status epilepticus, usually the nonconvulsive type, which is characterized by dizziness, apathy, and unresponsiveness. The seizures can cause sudden falling (or spasms in tonic, atonic and myoclonic episodes) and/or loss of balance, which is why patients often wear a helmet to prevent head injury.
In addition to daily multiple seizures of various types, children with LGS frequently have arrested/slowed psycho-motor development and behavior disorders.
The syndrome is also characterized by an (between-seizures) EEG featuring slow spike-wave complexes.
Ohtahara syndrome is rare and the earliest-appearing age-related epileptic encephalopathy, with seizure onset occurring within the first three months of life, and often in the first ten days. Many, but not all, cases of OS evolve into other seizure disorders, namely West syndrome and Lennox-Gastaut syndrome.
The primary outward manifestation of OS is seizures, usually presenting as tonic seizures (a generalized seizure involving a sudden stiffening of the limbs). Other seizure types that may occur include partial seizures, clusters of infantile spasms, and, rarely, myoclonic seizures. In addition to seizures, children with OS exhibit profound mental and physical retardation.
Clinically, OS is characterized by a "burst suppression" pattern on an EEG. This pattern involves high voltage spike wave discharge followed by little brain wave activity.
It is named for the Japanese neurologist Shunsuke Ohtahara (1930–2013), who identified it in 1976.
FIRES seizures are non-focal - there is no specified starting or stopping point - making brain surgery impossible. These seizures damage cognitive abilities of the brain such as memory or sensory abilities. This can result in learning disabilities, behavioral disorders, memory issues, sensory changes, inability to move, and death. Children continue to have seizures throughout their lives.
Focal seizures are often preceded by certain experiences, known as an aura. These may include: sensory, visual, psychic, autonomic, olfactory or motor phenomena.
In a complex partial seizure a person may appear confused or dazed and can not respond to questions or direction. Focal seizure may become generalized.
Jerking activity may start in a specific muscle group and spread to surrounding muscle groups—known as a "Jacksonian march". Unusual activities that are not consciously created may occur. These are known as automatisms and include simple activities like smacking of the lips or more complex activities such as attempts to pick something up.
There are six main types of generalized seizures: tonic-clonic, tonic, clonic, myoclonic, absence, and atonic seizures. They all involve a loss of consciousness and typically happen without warning.
- Tonic-clonic seizures present with a contraction of the limbs followed by their extension, along with arching of the back for 10–30 seconds. A cry may be heard due to contraction of the chest muscles. The limbs then begin to shake in unison. After the shaking has stopped it may take 10–30 minutes for the person to return to normal.
- Tonic seizures produce constant contractions of the muscles. The person may turn blue if breathing is impaired.
- Clonic seizures involve shaking of the limbs in unison.
- Myoclonic seizures involve spasms of muscles in either a few areas or generalized through the body.
- Absence seizures can be subtle, with only a slight turn of the head or eye blinking. The person often does not fall over and may return to normal right after the seizure ends, though there may also be a period of post-ictal disorientation.
- Atonic seizures involve the loss of muscle activity for greater than one second. This typically occurs bilaterally (on both sides of the body).
Tonic–clonic Seizures with repetitive sequences of stiffening and jerking of the extremities.
Myoclonic Seizures with rapid, brief contractions of muscles.
Atonic Seizures with a sudden loss of muscle tone, often resulting in sudden collapse. These are also called drop seizures.
Absence A generalized seizure characterized by staring off and occasionally some orofacial automatisms.
Myoclonic astatic Seizures that involve a myoclonic seizure followed immediately by an atonic seizure. This type of seizure is exclusive to MAE and is one of the defining characteristics of this syndrome.
Tonic Muscle stiffening or rigidity. This seizure is rare in this syndrome.
Dravet syndrome has been characterized by prolonged febrile and non-febrile seizures within the first year of a child’s life. This disease progresses to other seizure types like myoclonic and partial seizures, psychomotor delay, and ataxia. It is characterized by cognitive impairment, behavioral disorders, and motor deficits. Behavioral deficits often include hyperactivity and impulsiveness, and in more rare cases, autistic-like behaviors. Dravet syndrome is also associated with sleep disorders including somnolence and insomnia. The seizures experienced by people with Dravet syndrome become worse as the patient ages since the disease is not very predictable when first diagnosed. This coupled with the range of severity differing between each individual diagnosed and the resistance of these seizures to drugs has made it challenging to develop treatments.
Dravet syndrome appears during the first year of life, often beginning around six months of age with frequent febrile seizures (fever-related seizures). Children with Dravet syndrome typically experience a lagged development of language and motor skills, hyperactivity and sleep difficulties, chronic infection, growth and balance issues, and difficulty relating to others. The effects of this disorder do not diminish over time, and children diagnosed with Dravet syndrome require fully committed caretakers with tremendous patience and the ability to closely monitor them.
Febrile seizures are divided into two categories known as simple and complex. A febrile seizure would be categorized as complex if it has occurred within 24 hours of another seizure or if it lasts longer than 15 minutes. A febrile seizure lasting less than 15 minutes would be considered simple. Sometimes modest hyperthermic stressors like physical exertion or a hot bath can provoke seizures in affected individuals. However, any seizure uninterrupted after 5 minutes, without a resumption of postictal (more normal; recovery-type; after-seizure) consciousness can lead to potentially fatal status epilepticus.
The onset of seizures is between the ages of 2 and 5. EEG shows regular and irregular bilaterally synchronous 2- to 3-Hz spike-waves and polyspike patterns with a 4- to 7-Hz background. 84% of affected children show normal development prior to seizures; the remainder show moderate psychomotor retardation mainly affecting speech. Boys (74%) are more often affected than girls (Doose and Baier 1987a).
Panayiotopoulos syndrome occurs exclusively in otherwise normal children and manifests mainly with infrequent autonomic epileptic seizures and autonomic status epilepticus. Onset of seizures is from age 1 to 14 years with 76% starting between 3–6 years. Autonomic seizures consist of episodes of disturbed autonomic function with nausea, retching and vomiting as predominant symptoms. Other autonomic manifestations include pallor (or, less often, flushing or cyanosis), mydriasis (or, less often, miosis), cardiorespiratory and thermoregulatory alterations, incontinence of urine and/or feces, hypersalivation, and modifications of intestinal motility. In approximately one fifth of the seizures the child becomes unresponsive and flaccid (syncope-like epileptic seizures or ictal syncope) before or often without convulsions. Syncope-like epileptic seizures (ictal syncope) with the child becoming "completely unresponsive and flaccid like a rag doll" occur in one fifth of the seizures. More-conventional seizure symptoms often appear after the onset of autonomic manifestations. The child, who was initially fully conscious, becomes confused and unresponsive. Eyes turn to one side or gaze widely open. Only half of the seizures end with brief hemiconvulsions or generalized convulsions. Autonomic symptoms may be the only features of the seizures. None of the above symptoms alone is a prerequisite for diagnosis. Recurrent seizures may not be stereotyped. The same child may have brief or prolonged seizures and autonomic manifestations may be severe or inconspicuous. The full emetic triad (nausea, retching, vomiting) culminates in vomiting in 74% of the seizures; in others only nausea or retching occur, and in a few, none of the emetic symptoms are apparent.
Most of the seizures are prolonged and half of them last more than 30 minutes thus constituting autonomic status epilepticus, which is the more common nonconvulsive status epilepticus in normal children. Characteristically, even after the most severe seizures and autonomic status epilepticus, the child is normal after a few hours of sleep, which is both diagnostic and reassuring. However, it has been recently reported that sometime after status epilepticus in children with Panayiotopoulos syndrome a. growth of the frontal and prefrontal lobes is slightly decreased and b.the scores on the neuropsychological tests is decreased.
Focal onset hemiconvulsions or generalised convulsions occur in nearly half of the seizures. These are usually shorter than the preceding autonomic manifestations but in a few cases a. they may be prolonged constituting convulsive status epilepticus or b. the preceding autonomic manifestations are brief and not apparent
Seizures can occur at any time but they are more common during sleep.
Panayiotopoulos syndrome is now the formally approved nomenclature for this syndrome in the new International League against Epilepsy report on classification, which abandoned a number of previously used descriptive terms such as early onset benign childhood epilepsy with occipital paroxysms, early onset benign childhood occipital epilepsy, nocturnal childhood occipital epilepsy. The reason for this is that these descriptive terms were criticized as incorrect because in Panayiotopoulos syndrome:
“An autonomic seizure is an epileptic seizure characterized by altered autonomic function of any type at seizure onset or in which manifestations consistent with altered autonomic function are prominent (quantitatively dominant or clinically important) even if not present at seizure onset. The altered autonomic function may be objective or subjective or both.”
“Autonomic status epilepticus is an autonomic seizure which lasts for more than 30 minutes, or a series of such seizures over a 30 minute period without full recovery between seizures.”
"Focal aware" means that the level of consciousness is not altered during the seizure. In temporal lobe epilepsy, a focal seizure usually causes abnormal sensations only.
These may be:
- Sensations such as déjà vu (a feeling of familiarity), jamais vu (a feeling of unfamiliarity)
- Amnesia; or a single memory or set of memories
- A sudden sense of unprovoked fear and anxiety
- Nausea
- Auditory, visual, olfactory, gustatory, or tactile hallucinations.
- Visual distortions such as macropsia and micropsia
- Dissociation or derealisation
- Synesthesia (stimulation of one sense experienced in a second sense) may transpire.
- Dysphoric or euphoric feelings, fear, anger, and other emotions may also occur. Often, the patient cannot describe the sensations.
Olfactory hallucinations often seem indescribable to patients beyond "pleasant" or "unpleasant".
Focal aware seizures are often called "auras" when they serve as a warning sign of a subsequent seizure. Regardless an "aura" is actually a seizure itself, and such a focal seizure may or may not progress to a focal impaired awareness seizure. People who only experience focal aware seizures may not recognize what they are, nor seek medical care.
Focal impaired awareness seizures are seizures which impair consciousness to some extent: they alter the person's ability to interact normally with their environment. They usually begin with a focal aware seizure, then spread to a larger portion of the temporal lobe, resulting in impaired consciousness. They may include autonomic and psychic features present in focal aware seizures.
Signs may include:
- Motionless staring
- Automatic movements of the hands or mouth
- Confusion and disorientation
- Altered ability to respond to others, unusual speech
- Transient aphasia (losing ability to speak, read, or comprehend spoken word)
These seizures tend to have a warning or aura before they occur, and when they occur they generally tend to last only 1–2 minutes. It is not uncommon for an individual to be tired or confused for up to 15 minutes after a seizure has occurred, although postictal confusion can last for hours or even days. Though they may not seem harmful, due to the fact that the individual does not normally seize, they can be extremely harmful if the individual is left alone around dangerous objects. For example, if a person with complex partial seizures is driving alone, this can cause them to run into the ditch, or worse, cause an accident involving multiple people. With this type, some people do not even realize they are having a seizure and most of the time their memory from right before or after the seizure is wiped. First-aid is only required if there has been an injury or if this is the first time a person has had a seizure.
Epileptic symptoms are frequently the product of the spread of overactivation occurring within one central foci that travels to lateral brain regions thereby causing an array of symptoms. Due to the massive amount of diversity in both the cognitive and motor functions that occur within the frontal lobes, there is an immense variety in the types of symptoms that can arise from epileptic seizures based on the side and topography of the focal origin. In general these symptoms can range anywhere from asymmetric and abnormal body positioning to repetitive vocal outbursts and repetitive jerking movements. The symptoms typically come in short bursts that last less than a minute and often occur while a patient is sleeping. In most cases, a patient will experience a physical or emotional Aura of tingling, numbness or tension prior to a seizure occurring. Fear is associated with temporal and frontal lobe epilepsies, but in FLE the fear is predominantly expressed on the person's face whereas in TLE the fear is subjective and internal, not perceptible to the observer.
Tonic posture and clonic movements are common symptoms among most of the areas of the frontal lobe, therefore the type of seizures associated with frontal lobe epilepsy are commonly called tonic-clonic seizures. Dystonic motor movements are common to both TLE and FLE, but are usually the first symptom in FLE episodes where they are quite brief and do not affect consciousness. The seizures are complex partial, simple partial, secondarily generalized or a combination of the three. These partial seizures are often misdiagnosed as psychogenic seizures. A wide range of more specific symptoms arise when different parts of the frontal cortex are affected.
- Supplementary motor area (SMA)
- The onset and relief of the seizure are quite abrupt.
- The tonic posturing in this area is unilateral or asymmetric between the left and right hemispheres. A somatosensory aura frequently precedes many large motor and vocal symptoms and most often the afflicted person is responsive.
- "Motor symptoms": Facial grimacing and complex automatisms like kicking and pelvic thrusting
- "Vocal symptoms": Laughing, yelling, or speech arrest.
- Primary motor cortex
- The primary motor cortex has jacksonian seizures that spread to adjacent areas of the lobe which often trigger a second round of seizures originating in another cortical area. The seizures are much simpler than those that originate in the SMA and are usually clonic or myoclonic movements with speech arrest. Some dystonic or contralateral adversive posturing may also be present.
- Medial frontal, cingulate gyrus, orbitofrontal, or frontopolar regions
- Motor symptoms of seizures in this area are accompanied by emotional feelings and viscerosensory symptoms. Motor and vocal agitation are similar to that of the SMA with short repetitive thrashing, pedaling, thrusting, laughing, screaming and/or crying.
- This is some of what can cause the misdiagnosis of a psychological disorder.
- Dorsolateral cortex
- This area does not seem to have many motor symptoms beyond tonic posturing or clonic movements. Contralateral or less commonly ipsilateral head turn and eye deviation are commonly associated with this area as well.
- Operculum
- Many of the symptoms associated with this area involve the head and digestive tract: swallowing, salivation, mastication and possibly gustatory hallucinations. Preceding the seizure the person is fearful and often has an epigastric aura. There is not much physical movement except clonic facial movements. Speech is often arrested.
Generalized seizures can be either absence seizures, myoclonic seizures, clonic seizures, tonic-clonic seizures or atonic seizures.
Generalized seizures occur in various seizure syndromes, including myoclonic epilepsy, familial neonatal convulsions, childhood absence epilepsy, absence epilepsy, infantile spasms (West's syndrome), Juvenile Myoclonic Epilepsy and Lennox-Gastaut syndrome.
Lennox–Gastaut syndrome (LGS) is a childhood-onset epilepsy that most often appears between the second and sixth year of life. LGS is characterized by a triad of signs including frequent seizures of multiple types, an abnormal EEG pattern of less than 2.5 Hz slow spike wave activity, and moderate to severe intellectual impairment.
Episodes that include complex hyperactivity of the proximal portions of the limbs that lead to increased overall motor activity are called hypermotor seizures. When associated with bizarre movements and vocalizations these seizures are often misdiagnosed as pseudoseizures or other episodic movement disorders such as psychogenic movement disorders, familial paroxysmal dystonic choreoathetosis, paroxysmal kinesogenic choreoathetosis, or episodic ataxia type 1. Hypermotor seizure in children are often confused with pavor nocturnus (night terrors). Paroxysmal nocturnal dystonia or hypnogenic paroxysmal dystonia are other names given to describe FLE symptoms but are simply just FLE.
Autosomal Dominant Nocturnal Frontal Lobe Epilepsy (ADNFLE) is the best understood form of frontal lobe epilepsy but is often misdiagnosed as sleep apnea. Both disorders are characterized by awakening during the night which leads to daytime sleepiness. Some symptoms of sleep apnea overlap with those of ADNFLE, such as sudden awakening accompanied by a feeling of choking and on occasion motor activity which makes diagnosis difficult based on symptoms alone. Video surveillance as well as EEG is occasionally needed to differentiate between the two disorders. It has been reported that sleep apnea might be associated with epilepsy which would account for some of the misdiagnoses.
Ohtahara syndrome (OS), also known as early infantile epileptic encephalopathy with burst-suppression (EIEE), is a progressive epileptic encephalopathy. The syndrome is outwardly characterized by tonic spasms and partial seizures, and receives its more elaborate name from the pattern of burst activity on an electroencephalogram (EEG). It is an extremely debilitating progressive neurological disorder, involving intractable seizures and severe mental retardation. No single cause has been identified, although in many cases structural brain damage is present.
The cause of FIRES is not known. It does not happen twice in the same family, but the medical community does not know if it is genetic. It happens in boys more than girls. After the initial status, life expectancy is not affected directly. Issues such as overdose of medications or infections at a food tube site are examples of things that would be secondary to the status.
The condition may be difficult to diagnose. The subject may be unaware they have a seizure disorder. To others, the involuntary movements made during sleep may appear no different from those typical of normal sleep.People who have nocturnal seizures may notice unusual conditions upon awakening in the morning, such as a headache, having wet the bed, having bitten the tongue, a bone or joint injury, muscle strains or weakness, fatigue, or lightheadedness. Others may notice unusual mental behaviors consistent with the aftermath of a seizure. Objects near the bed may have been knocked to the floor, or the subject may be surprised to find themselves on the floor.
There are many risks associated with nocturnal seizures including concussion, suffocation and sudden unexpected death (SUDEP).
Generalized epilepsy, also known as primary generalized epilepsy or idiopathic epilepsy, is a form of epilepsy characterised by generalised seizures with no apparent cause. Generalized seizures, as opposed to focal seizures, are a type of seizure that impairs consciousness and distorts the electrical activity of the whole or a larger portion of the brain (which can be seen, for example, on electroencephalography, EEG).
Generalized epilepsy is "primary" because the epilepsy is the originally diagnosed condition itself, as opposed to "secondary" epilepsy, which occurs as a symptom of a diagnosed condition.
Possible causes include:
- Syncope (fainting)
- Reflex anoxic seizures
- Breath-holding spells of childhood
- Hypoglycaemia
- Cataplexy
- Hyperekplexia, also called startle syndrome
- Migraine
- Narcolepsy
- Non-epileptic myoclonus
- Opsoclonus
- Parasomnias, including night terrors
- Paroxysmal kinesigenic dyskinesia
- Repetitive or ritualistic behaviours
- Tics
- AADC Deficiency
The International League Against Epilepsy (ILAE) define an epileptic seizure as "a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain." Epileptic seizures can occur in someone who does not have epilepsy – as a consequence of head injury, drug overdose, toxins, eclampsia or febrile convulsions, for example.
Medically, when used on its own, the term seizure implies an epileptic seizure. The lay use of this word can also include sudden attacks of illness, loss of control, spasm or stroke. Where the physician is uncertain as to the diagnosis, the medical term paroxysmal event and the lay terms spells, funny turns or attacks may be used.
Myoclonic seizures involve brief involuntary muscle twitching, and may become frequent enough to be disabling. Tonic-clonic seizures have two phases: the tonic phase may last a few seconds and involves the muscles tensing, and may lead to the person falling down; the clonic phase involves a convulsion of rapidly alternating muscle tensing and relaxing. Neurological dysfunction includes difficulty coordinating muscle movements (ataxia) and a decline in cognitive ability (dementia).