Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The crisis is a common complication in sickle-cell patients and can be associated with one or more symptoms including fever, cough, excruciating pain, sputum production, shortness of breath, or low oxygen levels.
Acute chest syndrome is often precipitated by a lung infection, and the resulting inflammation and loss of oxygen saturation leads to further sickling of red cells, thus exacerbating pulmonary and systemic hypoxemia, sickling, and vaso-occlusion.
The signs and symptoms of ARDS often begin within two hours of an inciting event, but can occur after 1–3 days. Signs and symptoms may include shortness of breath, fast breathing, and a low oxygen level in the blood due to abnormal ventilation.
Acute respiratory distress syndrome (ARDS) is a medical condition occurring in critically ill patients characterized by widespread inflammation in the lungs. ARDS is not a particular disease; rather, it is a clinical phenotype which may be triggered by various pathologies such as trauma, pneumonia and sepsis.
The hallmark of ARDS is diffuse injury to cells which form the barrier of the microscopic air sacs of the lungs, surfactant dysfunction, activation of the innate immune system response, and dysfunction of the body's regulation of clotting and bleeding. In effect, ARDS impairs the lungs' ability to exchange oxygen and carbon dioxide with the blood across a thin layer of the lungs' microscopic air sacs known as alveoli.
The syndrome is associated with a death rate between 20 and 50%. The risk of death varies based on severity, the person's age, and the presence of other underlying medical conditions.
Although the terminology of "adult respiratory distress syndrome" has at times been used to differentiate ARDS from "infant respiratory distress syndrome" in newborns, the international consensus is that "acute respiratory distress syndrome" is the best term because ARDS can affect people of all ages.
Fire breather’s pneumonia usually presents with certain non-specific symptoms, and may vary significantly among individuals. The most common symptoms include:
- Cough
- Dyspnea (shortness of breath)
- Chest pain
- Fever
- Weakness
- Hemoptysis (coughing up blood)
Acute pneumonitis typically begins asymptomatic, with a worsening of symptoms over the course of hours or days. Following aspiration of fuel, there is often a period of latency from 8–24 hours before the symptoms occur. Patients may not recall a specific instance of aspiration. Severe cases may lead to acute respiratory distress syndrome (ARDS).
Pulmonary embolism classically presents with an acute onset of shortness of breath. Other presenting symptoms include pleuritic chest pain, cough, hemoptysis, and fever. Risk factors include deep vein thrombosis, recent surgery, cancer, and previous thromboembolism. It must always be considered in those with acute onset of shortness of breath owing to its high risk of mortality. Diagnosis however may be difficult and Wells Score is often used to assess the clinical probability. Treatment, depending on severity of symptoms typically start with anticoagulants, presence of ominous signs (low blood pressure), may warrant the use of thrombolytic drugs.
Oral ingestion of hydrocarbons often is associated with symptoms of mucous membrane irritation, vomiting, and central nervous system depression. Cyanosis, tachycardia, and tachypnea may appear as a result of aspiration, with subsequent development of chemical pneumonitis. Other clinical findings include albuminuria, hematuria, hepatic enzyme derangement, and cardiac arrhythmias. Doses as low as 10 ml orally have been reported to be potentially fatal, whereas some patients have survived the ingestion of 60 ml of petroleum distillates. A history of coughing or choking in association with vomiting strongly suggests aspiration and hydrocarbon pneumonia. Hydrocarbon pneumonia is an acute hemorrhagic necrotizing disease that can develop within 24 h after the ingestion. Pneumonia may require several weeks for complete resolution.
Symptoms of chemical (hydrocarbon) pneumonia may include:
- burning of the nose, eyes, lips, mouth, and throat
- dry cough
- wet cough producing clear, yellow, or green mucus
- cough producing blood or frothy pink matter
- nausea or abdominal pain
- chest pain
- shortness of breath
- painful breathing or pleuritis (an inflammation of the outside covering of the lungs)
- headache
- flu symptoms
Anaemia that develops gradually usually presents with exertional dyspnea, fatigue, weakness, and tachycardia. It may lead to heart failure. Anaemia caused by low haemoglobin levels is often a cause of dyspnea. Menstruation, particularly if excessive, can contribute to anaemia and to consequential dyspnea in women. Headaches are also a symptom of dyspnea in patients suffering from anaemia. Some patients report a numb sensation in their head, and others have reported blurred vision caused by hypotension behind the eye due to a lack of oxygen and pressure; these patients have also reported severe head pains, many of which lead to permanent brain damage. Symptoms can include loss of concentration, focus, fatigue, language faculty impairment and memory loss.
Alveolar disease is visible on chest radiography as small, ill-defined nodules of homogeneous density centered on the acini or bronchioles. The nodules coalesce early in the course of disease, such that the nodules may only be seen as soft fluffy edges in the periphery.
When the nodules are centered on the hilar regions, the chest x-ray may develop what is called the "butterfly," or "batwing" appearance. The nodules may also have a segmental or lobar distribution. Air alveolograms and air bronchograms can also be seen.
These findings appear soon after the onset of symptoms and change rapidly thereafter.
A segmental or lobar pattern may be apparent after aspiration pneumonia, atelectasis, lung contusion, localized pulmonary edema, obstructive pneumonia, pneumonia, pulmonary embolism with infarction, or tuberculosis.
In a typical case, an infant under two years of age develops cough, wheeze, and shortness of breath over one or two days. Crackles or wheeze are typical findings on listening to the chest with a stethoscope. The infant may be breathless for several days. After the acute illness, it is common for the airways to remain sensitive for several weeks, leading to recurrent cough and wheeze.
Some signs of severe disease include:
- poor feeding (less than half of usual fluid intake in preceding 24 hours)
- significantly decreased activity
- history of stopping breathing
- respiratory rate >70/min
- presence of nasal flaring and/or grunting
- severe chest wall recession (Hoover's sign)
- bluish skin
Alveolar lung disease may be divided into acute or chronic. Causes of acute alveolar lung disease include pulmonary edema (cardiogenic or neurogenic), pneumonia (bacterial or viral), pulmonary embolism, systemic lupus erythematosus, bleeding in the lungs (e.g., Goodpasture syndrome), idiopathic pulmonary hemosiderosis, and granulomatosis with polyangiitis.
Chronic alveolar lung disease can be caused by pulmonary alveolar proteinosis, alveolar cell carcinoma, mineral oil pneumonia, sarcoidosis (alveolar form), lymphoma, tuberculosis, metastases, or desquamative interstitial pneumonia.
The clinical presentation of plastic bronchitis beyond expectoration of casts includes a productive cough, dyspnea, fever and wheezing. Focal wheezing is a characteristic, if not specific, physical examination finding. If the casts completely obstruct the airway, breath sounds will be decreased and dullness will be present with percussion. With partial obstruction, a “fan sound” or “flag flapping” sound can be heard during auscultation. Bronchial casts can sometimes fill the airways of almost an entire lung, and present as an acute, life-threatening emergency.
Most types of eosinophilic pneumonia have similar signs and symptoms. Prominent and nearly universal signs and symptoms include cough, fever, difficulty breathing, and night sweats. Acute eosinophilic pneumonia typically follows a rapid course. Fever and cough may develop only one or two weeks before breathing difficulties progress to the point of respiratory failure requiring mechanical ventilation. Chronic eosinophilic pneumonia usually follows a slower course. Symptoms accumulate over several months and include fever, cough, difficulty breathing, wheezing, and weight loss. Individuals with CEP are often misdiagnosed with asthma before CEP is finally recognized.
EP due to medications or environmental exposures is similar and occurs after an exposure to a known offending agent. EP due to parasitic infections has a similar prodrome in addition to a host of different symptoms related to the variety of underlying parasites. EP in the setting of cancer often develops in the context of a known diagnosis of lung cancer, cervical cancer, etc.
May have no signs and symptoms or they may include:
- cough, but not prominent;
- chest pain (not common);
- breathing difficulty (fast and shallow);
- low oxygen saturation;
- pleural effusion (transudate type);
- cyanosis (late sign);
- increased heart rate.
It is a common misconception that atelectasis causes fever. A study of 100 post-op patients followed with serial chest X-rays and temperature measurements showed that the incidence of fever decreased as the incidence of atelectasis increased. A recent review article summarizing the available published evidence on the association between atelectasis and post-op fever concluded that there is no clinical evidence supporting this doctrine.
Atelectasis may be an acute or chronic condition. In acute atelectasis, the lung has recently collapsed and is primarily notable only for airlessness. In chronic atelectasis, the affected area is often characterized by a complex mixture of airlessness, infection, widening of the bronchi (bronchiectasis), destruction, and scarring (fibrosis).
Idiopathic pulmonary haemosiderosis (or idiopathic pulmonary hemosiderosis; IPH) is a lung disease of unknown cause that is characterized by alveolar capillary bleeding and accumulation of haemosiderin in the lungs. It is rare, with an incidence between 0.24 and 1.23 cases per million people.
An acute exacerbation of COPD is associated with increased frequency and severity of coughing. It is often accompanied by worsened chest congestion and discomfort. Shortness of breath and wheezing are present in many cases. Exacerbations may be accompanied by increased amount of cough and sputum productions, and a change in appearance of sputum. An abrupt worsening in COPD symptoms may cause rupture of the airways in the lungs, which in turn may cause a spontaneous pneumothorax.
In infection, there is often weakness, fever and chills. If due to a bacterial infection, the sputum may be slightly streaked with blood and coloured yellow or green.
Clinically, IPH manifests as a triad of haemoptysis, diffuse parenchymal infiltrates on chest radiographs, and iron deficiency anaemia. It is diagnosed at an average age of 4.5 plus or minus 3.5 years, and it is twice as common in females. The clinical course of IPH is exceedingly variable, and most of the patients continue to have episodes of pulmonary haemorrhage despite therapy. Death may occur suddenly from acute pulmonary haemorrhage or after progressive pulmonary insufficiency resulting in chronic respiratory failure.
The typical symptoms of UIP are progressive shortness of breath and cough for a period of months. In some patients, UIP is diagnosed only when a more acute disease supervenes and brings the patient to medical attention.
Fire breather's pneumonia, also known as fire breather's lung or fire-eater's lung, is a distinct type of exogenous—that is, originating outside the body—lipoid pneumonia (chemical pneumonitis) that results from inhalation or aspiration of hydrocarbons of different types, such as lamp oil. Accidental inhalation of hydrocarbon fuels can occur during fire breathing, fire eating, or other fire performance, and may lead to pneumonitis.
Symptoms can vary significantly among individuals, ranging from asymptomatic to a severe, life-threatening disease. Onset usually occurs within hours, though symptoms may not appear for several days. Lipoid pneumonia is a rare condition, but is an occupational hazard of fire performers.
Acute:
- Cough
- Difficulty Breathing
- Abnormal lung sounds (wet, gurgling sounding breaths)
- Chest pain, tightness or burning
Chronic:
- Persistent cough
- Shortness of breath
- Increased susceptibility to respiratory illness
Symptoms of chronic chemical pneumonitis may or may not be present, and can take months or years to develop to the point of noticeability.
Pulmonary edema, connective tissue diseases, asbestosis, lymphangitic carcinomatosis, lymphoma, lymphangioleiomyomatosis, drug-induced lung diseases
- Lymphadenopathy
Sarcoidosis, silicosis, berylliosis, lymphangitic carcinomatosis, lymphoma, lymphocytic interstitial pneumonia
The majority of PB cases are associated with an underlying disease. Several systemic illnesses have been associated with plastic bronchitis:
- Cardiac: constrictive pericarditis, congenital heart disease
- Pulmonary: asthma, allergic bronchopulmonary aspergillosis, aspergillosis, bronchiectasis, cystic fibrosis, tuberculosis, pneumonia, and bronchocentric granulomatosis
- Disorders of lymphatic drainage: lymphangiectasia, lymphangiomatosis
- Miscellaneous: acute chest syndrome/sickle cell disease, amyloidosis, rheumatoid arthritis, membranous colitis, inhaled irritants, neoplastic (lymphoma)
The most common form of plastic bronchitis follows cardiac surgery for congenital heart disease, especially the Fontan procedure. Systemic blood flow is diverted to pulmonary flow, elevating pressures in the pulmonary venous system, and promoting leaks of proteinaceous and lipid-rich fluids from the lymphatics into the bronchial tree.
Bronchiolitis is blockage of the small airway in the lungs due to a viral infection. It usually only occurs in children less than two years of age. Symptoms may include fever, cough, runny nose, wheezing, and breathing problems. More severe cases may be associated with nasal flaring, grunting, or the skin between the ribs pulling in with breathing. If the child has not been able to feed properly, signs of dehydration may be present.
Bronchiolitis is usually the result of infection by respiratory syncytial virus (72% of cases) or human rhinovirus (26% of cases). Diagnosis is generally based on symptoms. Tests such as a chest X-ray or viral testing are not routinely needed. Urine testing may be considered in those with a fever.
There is no specific treatment. Supportive care at home is generally sufficient. Occasionally hospital admission for oxygen, support with feeding, or intravenous fluids is required. Evidence for antibiotics, antivirals, bronchodilators, or nebulized hypertonic saline or epinephrine is either unclear or not supportive.
About 10% to 30% of children under the age of two years are affected by bronchiolitis at some point in time. It more commonly occurs in the winter in the Northern hemisphere. The risk of death among those who are admitted to hospital is about 1%. Outbreaks of the condition were first described in the 1940s.
Pulmonary Langerhans cell histiocytosis, silicosis, coal workers pneumoconiosis, carmustine related pulmonary fibrosis, respiratory broncholitis associated with interstitial lung disease.
- Lower lung predominance
Idiopathic pulmonary fibrosis, pulmonary fibrosis associated with connective tissue diseases, asbestosis, chronic aspiration
- Central predominance (perihilar)
Sarcoidosis, berylliosis
- Peripheral predominance
Idiopathic pulmonary fibrosis, chronic eosinophilic pneumonia, cryptogenic organizing pneumonia